Advertisements
Advertisements
प्रश्न
Solve: (1 – x) dy – (1 + y) dx = 0
उत्तर
(1 – x) dy = (1 + y) dx
`("d"y)/((1 + y)) = ("d"x)/((1 - x))`
Integrating on both sides
`int ("d"y)/((1 + y)) = int ("d"x)/((1 - x))`
`int ("d"y)/((1 + y)) = - int (- "d"x)/((1 - x))`
`log (1 + y) = - log (1 - x) + log "c"`
`log (1 + y) = log ("c"/((1 - x)))`
⇒ `(1 + y) = "c"/((1 - x))`
∴ `(1 - x)(1 + y)` = c
APPEARS IN
संबंधित प्रश्न
If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by `"M""dv"/"dt"` = F – kV, where k is a constant. Express V in terms of t given that V = 0 when t = 0
Solve the following differential equation:
`("d"y)/("d"x) - xsqrt(25 - x^2)` = 0
Solve the following differential equation:
`(x^3 + y^3)"d"y - x^2 y"d"x` = 0
Solve the following differential equation:
`2xy"d"x + (x^2 + 2y^2)"d"y` = 0
Choose the correct alternative:
The solution of `("d"y)/("d"x) = 2^(y - x)` is
Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0
Solve the following homogeneous differential equation:
`("d"y)/("d"x) = (3x - 2y)/(2x - 3y)`
Solve the following homogeneous differential equation:
The slope of the tangent to a curve at any point (x, y) on it is given by (y3 – 2yx2) dx + (2xy2 – x3) dy = 0 and the curve passes through (1, 2). Find the equation of the curve
Choose the correct alternative:
The integrating factor of the differential equation `("d"y)/("d"x) + "P"x` = Q is
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) + "P"y` = Q where P and Q are the function of x is