Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`(x^3 + y^3)"d"y - x^2 y"d"x` = 0
उत्तर
The given equation can be written as
`(x^3 + y^3)"d"y = x^2 y"d"x`
`("d"y)/("d"x) = (x^2y)/(x^3 + y^2)`
This is a homogeneous equation
y = vx
`("d"y)/("d"x) = "v" + x "dv"/("d"x)`
`"v" + x "dv"/("d"x) =(x^2 xx "v"x)/(x^3 + "v"^3x^3)`
= `(x^3"v")/(x^3[1 + "v"^3])`
`"v" + x "dv"/("d"x) = "v"/(1 + "v"^3)`
`x "dv"/("d"x) = "v"/(1 + "v"^3) - "v"`
= `("v" - "v"(1 + "v"^3))/(1 + "v"^3)`
`x "dv"/("d"x) = ("v" - "v" - "v"^4)/(1 + "v"^3)`
`x "dv"/("d"x) = (-"v"^4)/(1 + "v"^3)`
`((1 + "v"^3))/"v"^4 "dv" = (-"dv")/x`
On integrating,
`int (1 + "v"^3)/"v"^4 "dv" = - int ("d"x)/x`
`int (1/"v"^4 + "v"^3/"v"^4) "dv" = - log x + log "c"`
`int 1/"v"^4 "dv" + int 1/"v" "dv" = - logx + log "c"`
`int "v"^-4 "dv" + log "v" = - logx + log "c"`
`("v"^(-4 + 1))/(4 + 1) + log "v" = - log x + log "c"`
`"v"^(-3)/(-3) + log "v" + log x = log "c"`
`v^(-3)/(-3) + log("v"x) = log "c"`
`(-1)/(3"v"^3) + log("v"x) = log "c"`
`log "c" + 1/(3(y/x)^3) = log[y/x x]`
∵ y = vx
v = `y/x`
`log y = log "c" + 1/((3y^3)/x^3`
`log y = log "c" + x^3/(3y^3)`
`log y - log "c" = x^3/(3y^3)`
`log(y/"c") = x^3/(3y^3)`
`y/"c" = "e"^(x^3/(3y^3))`
y = `"ce"^(x^3/(3y^3))`
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`sin ("d"y)/("d"x)` = a, y(0) = 1
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
(ey + 1)cos x dx + ey sin x dy = 0
Solve the following differential equation:
`(ydx - xdy) cot (x/y)` = ny2 dx
Solve the following differential equation:
`("d"y)/("d"x) - xsqrt(25 - x^2)` = 0
Solve the following differential equation:
x cos y dy = ex(x log x + 1) dx
Solve the following differential equation:
(x2 + y2) dy = xy dx. It is given that y (1) = y(x0) = e. Find the value of x0
Choose the correct alternative:
The solution of `("d"y)/("d"x) = 2^(y - x)` is
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) - y = sqrt(x^2 + y^2)`
Solve the following:
`("d"y)/("d"x) + y/x = x'e"^x`
Solve the following:
A bank pays interest by continuous compounding, that is by treating the interest rate as the instantaneous rate of change of principal. A man invests ₹ 1,00,000 in the bank deposit which accrues interest, 8% per year compounded continuously. How much will he get after 10 years? (e0.8 = 2.2255)
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Choose the correct alternative:
If sec2 x is an integrating factor of the differential equation `("d"y)/("d"x) + "P"y` = Q then P =
Choose the correct alternative:
The variable separable form of `("d"y)/("d"x) = (y(x - y))/(x(x + y))` by taking y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)` is
Choose the correct alternative:
Which of the following is the homogeneous differential equation?
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1
Solve x2ydx – (x3 + y3) dy = 0
Solve `("d"y)/("d"x) = xy + x + y + 1`