Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`y"e"^(x/y) "d"x = (x"e"^(x/y) + y) "d"y`
उत्तर
The given equation can be written as
`("d"x)/("d"y) = (x"e"^(x/y) + y)/(y"e"^(x/y))` ........(1)
This is a Homogeneous differential equation
Put x = vy
⇒ `("d"x)/("d"y) = "v" + y * "dv"/("d"y)`
(1) ⇒ `"v" + y * "dv"/("d"y) = ("vve"^"v" + y)/(y"e"^"v")`
`"v" + y * "dv"/("d"y) = (y("ve"^"v" + 1))/(y"e"^"v")`
`y "d"/("d"y) = ("ve"^"v" + 1)/"e"^"v" - "v"`
`y "dv"/("d"y) = ("ve"^"v" + 1 - "ve"^"v")/"e"^"v"`
`y "dv"/("d"y) = 1/"e"^"v"`
Seperating the variables
`int "e"^"v" "dv" = int ("d"y)/y`
ev = log y + log c
ev = log |cy|
i.e., `"e"^(x/y)` = log |cy| .......`[∵ "v" = x/y]`
APPEARS IN
संबंधित प्रश्न
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
(ey + 1)cos x dx + ey sin x dy = 0
Solve the following differential equation:
`("d"y)/("d"x) = tan^2(x + y)`
Solve the following differential equation:
`x ("d"y)/("d"x) = y - xcos^2(y/x)`
Choose the correct alternative:
The solution of `("d"y)/("d"x) = 2^(y - x)` is
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (∅(y/x))/(∅(y/x))` is
Solve: `("d"y)/("d"x) + "e"^x + y"e"^x = 0`
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following homogeneous differential equation:
`("d"y)/("d"x) = (3x - 2y)/(2x - 3y)`
Solve the following homogeneous differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy
Solve the following:
`x ("d"y)/("d"x) + 2y = x^4`
Solve the following:
`("d"y)/("d"x) + y/x = x"e"^x`
Choose the correct alternative:
If y = ex + c – c3 then its differential equation is
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Choose the correct alternative:
Which of the following is the homogeneous differential equation?
Solve (x2 + y2) dx + 2xy dy = 0
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1