Advertisements
Advertisements
प्रश्न
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1
उत्तर
(D2 – 3D + 2) y = e4x
The auxiliary equation is m2 – 3m + 2 = 0
(m – 1)(m – 2) = 0
m = 1, 2
The roots are real and different
C.F = Aem1x + Bem1x
C.F = Aex + Be2x
P.I = `1/(("D"^2 - 3"D" + 2)) "e"^(4x)`
= `1/([(4)^2 - 3(4) + 2]) "e"^(4x)`
= `"e"^(4x)/((16 - 12 + 2))`
`"e"^(4x)/6`
The general solution is y = C.F + P.I
y = `"Ae"^x + "Be"^(2x) + "e"^(4x)/6` ......(1)
When x = 0, y = 0
Equation (1) ⇒ 0 = `"Ae"^0 + "Be"^0 + "e"^0/6`
0 = `"A"(1) + "B"(1) + 1/6`
A + B = `0 - 1/6`
A + B = `- 1/6` ........(2)
When x = 1, y = 0
Equation (1) ⇒ 0 = `"Ae"^1 + "Be"^2+ "e"^4/6` = 0
`"Ae" + "Be"^2 + "e"^4/6` = 0 ......(3)
From (2)
B = `(-1)/6 - A"`
Substitute B = `(-1)/6 - "A"` in equation (3)
`"Ae" + "e"^2 ((-1)/6 - "A") + "e"^4/6` = 0
`"Ae" - "e"^2/6 - "A"^2 + "e"^4/6` = 0
`"Ae" - "Ae"^2 = ("e"^2 - "e"^4)/6`
`"A"("e" - "e"^2) = (("e"^2 - "e"^4))/6`
A = `(("e"^2 - "e"^4))/(6("e" - "e"^2))`
`("e"^2(1 - "e"^2))/(6"e"(1 - "e")) = ("e"^2(1 + "e")(1 - "e"))/(6"e"(1 - "e"))`
A = `("e"(1 + "e"))/6`
⇒ A = `("e" + "e"^2)/6`
Then B = `- 1/6 - "A"`
B = `- 1/6 - (("e" + "e"^2)/6) = (-1 - "e" - "e"^2)/6`
B = `(-("e"^2 + "e" + 1))/6`
Substitute the values of A and B in equation (1)
y = `(("e" + "e"^2)/6) "e"^x - (("e"^2 + "e" + 1))/6 ("e"^(2x)) + "e"^(4x)/6`
y = `(("e"^2 + 2)"e"^x - ("e"^2 + "e" + 1)"e"^(2x) + "e"^(4x))/6`
⇒ 6y = `("e"^2 + "e")"e"^x - ("e"^2 + "e" + 1)"e"^(2x) + "e"^(4x)`
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
`(1 + 3"e"^(y/x))"d"y + 3"e"^(y/x)(1 - y/x)"d"x` = 0, given that y = 0 when x = 1
Solve: `(1 + x^2)/(1 + y) = xy ("d"y)/("d"x)`
Solve: ydx – xdy = 0 dy
Solve: (1 – x) dy – (1 + y) dx = 0
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) - y = sqrt(x^2 + y^2)`
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (f(y/x))/(f"'"(y/x))` is
Solve `x ("d"y)/(d"x) + 2y = x^4`
Solve x2ydx – (x3 + y3) dy = 0