Advertisements
Advertisements
प्रश्न
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) - y = sqrt(x^2 + y^2)`
उत्तर
`x ("d"y)/("d"x) - y = sqrt(x^2 + y^2)`
`x ("d"y)/("d"x) = sqrt(x^2 + y^2) + y`
`("d"y)/("d"x) = sqrt(x^2 + y^2 + y)/x` ........(1)
It is a homogeneous differential equation, same degree in x and y
Put y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)`
Equation (1)
⇒ `"v" + x "dv"/("d"x) = (sqrt(x^2 + ("v"x)^2) + "v"x)/x`
`"v" + x "dv"/("d"x) = (sqrt(x^2 (1 + "v"^2)) + "v"x)/x`
`"v" + x "dv"/("d"x) = (x[sqrt((1 + "v"^2)) + "v"])/x`
`"v" + x "dv"/("d"x) = sqrt((1 + "v"^2)) + "v"`
⇒ `x "dv"/("d"x) = sqrt(1 + "v"^2)`
`"dv"/sqrt(1 + "v"^2) = 1/x "d"x`
`log("v" + sqrt(1 + "v"^2)) = log x + log "c"`
`log("v" + sqrt(1 + "v"^2)) = log x "c"`
⇒ `"v" + sqrt(1 + "v"^2)` = xc
`y/x + sqrt(1 + y^2/x^2)` = xc
`y/x + sqrt((x^2 + y^2)/x^2)` = xc
⇒ `y/x + sqrt(x^2 + y^2)/x^2` = xc
`1/x [y + sqrt(y^2 + y^2)]` = xc
⇒ `y + sqrt(x^2 + y^2)` = x2c
APPEARS IN
संबंधित प्रश्न
If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by `"M""dv"/"dt"` = F – kV, where k is a constant. Express V in terms of t given that V = 0 when t = 0
Solve the following differential equation:
`(1 + 3"e"^(y/x))"d"y + 3"e"^(y/x)(1 - y/x)"d"x` = 0, given that y = 0 when x = 1
Solve the following differential equation:
(x2 + y2) dy = xy dx. It is given that y (1) = y(x0) = e. Find the value of x0
Choose the correct alternative:
The solution of `("d"y)/("d"x) + "p"(x)y = 0` is
Choose the correct alternative:
If sin x is the integrating factor of the linear differential equation `("d"y)/("d"x) + "P"y = "Q"`, then P is
Solve: `("d"y)/("d"x) = "ae"^y`
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following:
`("d"y)/("d"x) + y tan x = cos^3x`
Choose the correct alternative:
The differential equation of y = mx + c is (m and c are arbitrary constants)
Choose the correct alternative:
Which of the following is the homogeneous differential equation?