Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
(ey + 1)cos x dx + ey sin x dy = 0
उत्तर
(ey + 1) cos x dx + ey sin x dy = 0
ey sin x dy = – (ey + 1) cos x dx
`int ("e"^y "d"y)/("e"^y + 1) =-int (cosx "d"x)/sin x`
log (ey + 1) = – log sin x + log c
log [(ey + 1) + log sin x = log c
log (ey +1) sin x] = log c
(ey+ 1) sin x = c
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`sin ("d"y)/("d"x)` = a, y(0) = 1
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
`tan y ("d"y)/("d"x) = cos(x + y) + cos(x - y)`
Solve the following differential equation:
`y"e"^(x/y) "d"x = (x"e"^(x/y) + y) "d"y`
Solve the following differential equation:
`(y^2 - 2xy) "d"x = (x^2 - 2xy) "d"y`
Solve the following differential equation:
`(1 + 3"e"^(y/x))"d"y + 3"e"^(y/x)(1 - y/x)"d"x` = 0, given that y = 0 when x = 1
Choose the correct alternative:
The general solution of the differential equation `log(("d"y)/("d"x)) = x + y` is
Choose the correct alternative:
If sin x is the integrating factor of the linear differential equation `("d"y)/("d"x) + "P"y = "Q"`, then P is
Solve: `log(("d"y)/("d"x))` = ax + by
Solve the following homogeneous differential equation:
`(x - y) ("d"y)/("d"x) = x + 3y`
Solve the following homogeneous differential equation:
The slope of the tangent to a curve at any point (x, y) on it is given by (y3 – 2yx2) dx + (2xy2 – x3) dy = 0 and the curve passes through (1, 2). Find the equation of the curve
Solve the following:
`x ("d"y)/("d"x) + 2y = x^4`
Solve the following:
`("d"y)/("d"x) + y/x = x'e"^x`
Solve the following:
`("d"y)/("d"x) + y tan x = cos^3x`
Solve the following:
`("d"y)/("d"x) + y/x = x"e"^x`
Choose the correct alternative:
The differential equation of y = mx + c is (m and c are arbitrary constants)
Choose the correct alternative:
If sec2 x is an integrating factor of the differential equation `("d"y)/("d"x) + "P"y` = Q then P =
Choose the correct alternative:
A homogeneous differential equation of the form `("d"y)/("d"x) = f(y/x)` can be solved by making substitution