Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`sin ("d"y)/("d"x)` = a, y(0) = 1
उत्तर
`sin ("d"y)/("d"x)` = a
`sin ("d"y)/("d"x)` = sin–1(a)
The equation can be written as
dy = sin–1(a) dx
Taking integration on both sides, we get
`int "d"y = int sin^-1 ("a") "d"x`
y = `sin^-1 "a" int "d"x`
y = sin–1(a) x + C ........(1)
Initial condition:
Since y (0) = 1, we get
y = sin–1(a) x + C
1 = sin–1(a) (0) + C
0 + C = 1
C = 1
Equation (1)
⇒ y = sin–1(a) x + 1
y – 1 = sin–1(a) x
`(y - 1)/x` = sin–1(a)
`sin((y - 1)/x)` = a
APPEARS IN
संबंधित प्रश्न
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
Solve the following differential equation:
`y"d"x + (1 + x^2)tan^-1x "d"y`= 0
Solve the following differential equation:
`y"e"^(x/y) "d"x = (x"e"^(x/y) + y) "d"y`
Solve the following differential equation:
`2xy"d"x + (x^2 + 2y^2)"d"y` = 0
Solve the following differential equation:
`x ("d"y)/("d"x) = y - xcos^2(y/x)`
Choose the correct alternative:
The solution of `("d"y)/("d"x) + "p"(x)y = 0` is
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following homogeneous differential equation:
`(x - y) ("d"y)/("d"x) = x + 3y`
Solve the following homogeneous differential equation:
The slope of the tangent to a curve at any point (x, y) on it is given by (y3 – 2yx2) dx + (2xy2 – x3) dy = 0 and the curve passes through (1, 2). Find the equation of the curve
Solve the following:
`("d"y)/("d"x) - y/x = x`
Solve the following:
`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`
Choose the correct alternative:
The integrating factor of the differential equation `("d"y)/("d"x) + "P"x` = Q is
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) + "P"y` = Q where P and Q are the function of x is
Choose the correct alternative:
The variable separable form of `("d"y)/("d"x) = (y(x - y))/(x(x + y))` by taking y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)` is
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (f(y/x))/(f"'"(y/x))` is
Solve (x2 + y2) dx + 2xy dy = 0
Solve `("d"y)/("d"x) + y cos x + x = 2 cos x`