Advertisements
Advertisements
प्रश्न
Solve the following:
`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`
उत्तर
It is of the form `("d"y)/("d"x) + "P"y` = Q
Here P = `(3x^2)/(1 + x^3)`
Q = `(1 + x^2)/(1 + x^3)`
`int "Pd"x = int (3x^2)/(1 + x^3) "d"x`
= `log (1 + x^3)`
I.F = `"e"^(int Pdx)`
= `"e"^(log (1 + x^3))`
= `(1 + x^3)`
The required solution is
y(I.F) = `int "Q" ("I.F") "d"x + "c"`
`y(1 + x^3) = int ((1 + x^2))/((1 + x^3)) xx (1 + x^3) "d"x + "c"`
`y(1 + x^3) = int(1 + x^2) "d"x + "c"`
⇒ `y(1 + x^3) = x + x^3/3 + "c"`
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = sqrt((1 - y^2)/(1 - x^2)`
Solve the following differential equation:
`tan y ("d"y)/("d"x) = cos(x + y) + cos(x - y)`
Solve the following differential equation:
`[x + y cos(y/x)] "d"x = x cos(y/x) "d"y`
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following:
`("d"y)/(""dx) + y cos x = sin x cos x`
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Choose the correct alternative:
If sec2 x is an integrating factor of the differential equation `("d"y)/("d"x) + "P"y` = Q then P =
Solve (x2 + y2) dx + 2xy dy = 0