Advertisements
Advertisements
प्रश्न
Solve the following:
`("d"y)/("d"x) + y/x = x'e"^x`
उत्तर
`("d"y)/("d"x) + "p"y` = Q
Here P = `1/x`
Q = xex
`int "Pd"x = int 1/x "d"x`
= log x
I.F = `"e" int "pd"x`
= elog
= x
The required solution is
y(I.F) = `int "Q" ("I.F") "d"x + "c"`
y(x) = `int x"e"^x (x) "d"x`
xy = `int x^2 "e"^x "d"x`
xy = `(x^2) ("e"^x) - 2x"e"^x + 2"e"^x + "c"`
xy = `"e"^x (x^2 - 2x + 2) + "c"`
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
`tan y ("d"y)/("d"x) = cos(x + y) + cos(x - y)`
Solve the following differential equation:
`2xy"d"x + (x^2 + 2y^2)"d"y` = 0
Choose the correct alternative:
If sin x is the integrating factor of the linear differential equation `("d"y)/("d"x) + "P"y = "Q"`, then P is
Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0
Solve the following homogeneous differential equation:
An electric manufacturing company makes small household switches. The company estimates the marginal revenue function for these switches to be (x2 + y2) dy = xy dx where x represents the number of units (in thousands). What is the total revenue function?
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Choose the correct alternative:
The differential equation of x2 + y2 = a2
Choose the correct alternative:
The variable separable form of `("d"y)/("d"x) = (y(x - y))/(x(x + y))` by taking y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)` is
Solve `("d"y)/("d"x) + y cos x + x = 2 cos x`