Advertisements
Advertisements
Question
Solve the following:
`("d"y)/("d"x) + y/x = x'e"^x`
Solution
`("d"y)/("d"x) + "p"y` = Q
Here P = `1/x`
Q = xex
`int "Pd"x = int 1/x "d"x`
= log x
I.F = `"e" int "pd"x`
= elog
= x
The required solution is
y(I.F) = `int "Q" ("I.F") "d"x + "c"`
y(x) = `int x"e"^x (x) "d"x`
xy = `int x^2 "e"^x "d"x`
xy = `(x^2) ("e"^x) - 2x"e"^x + 2"e"^x + "c"`
xy = `"e"^x (x^2 - 2x + 2) + "c"`
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation:
(ey + 1)cos x dx + ey sin x dy = 0
Solve the following differential equation:
`(x^3 + y^3)"d"y - x^2 y"d"x` = 0
Choose the correct alternative:
The number of arbitrary constants in the general solutions of order n and n +1are respectively
Solve: `("d"y)/("d"x) + "e"^x + y"e"^x = 0`
Solve: `log(("d"y)/("d"x))` = ax + by
Solve the following homogeneous differential equation:
`(x - y) ("d"y)/("d"x) = x + 3y`
Solve the following homogeneous differential equation:
The slope of the tangent to a curve at any point (x, y) on it is given by (y3 – 2yx2) dx + (2xy2 – x3) dy = 0 and the curve passes through (1, 2). Find the equation of the curve
Choose the correct alternative:
If y = ex + c – c3 then its differential equation is
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Solve `("d"y)/("d"x) = xy + x + y + 1`