Advertisements
Advertisements
Question
Solve the following:
`("d"y)/("d"x) + y tan x = cos^3x`
Solution
It is of the form `("d"y)/("d"x) + "P"y` = Q
Here P = tan x
Q = cos3x
`int "Pd"x = int tan x "d"x`
= `int sinx/cosx "d"x`
= `- int (- sinx)/cosx "d"x`
= – log cos x
= log sec x
I.F = `"e"^(int Pdx)`
= `"e"^(log sec x)`
= sec x
The required solution is
y(I.F) = `int "Q" ("I.F") "d"x + "c"`
y(sec x) = `int cos^3x (sec x) "d"x + "c"`
y(sec x) = `int cos^3x 1/cosx "d"x + "c"`
y(sec x) = `int cos^2x "d"x + "c"`
y(sec x) = `int ((1 + cos 2x)/2) "d"x + "c"`
y(sec x) = `1/2 int (1 + cos2x) "d"x + "c"`
y(sec x) = `1/2 [x + (sin2x)/2] + "c"`
APPEARS IN
RELATED QUESTIONS
If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by `"M""dv"/"dt"` = F – kV, where k is a constant. Express V in terms of t given that V = 0 when t = 0
Choose the correct alternative:
The solution of `("d"y)/("d"x) = 2^(y - x)` is
Solve: `("d"y)/("d"x) + "e"^x + y"e"^x = 0`
Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0
Solve: (1 – x) dy – (1 + y) dx = 0
Solve the following:
`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`
Solve the following:
A bank pays interest by continuous compounding, that is by treating the interest rate as the instantaneous rate of change of principal. A man invests ₹ 1,00,000 in the bank deposit which accrues interest, 8% per year compounded continuously. How much will he get after 10 years? (e0.8 = 2.2255)
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) + "P"y` = Q where P and Q are the function of x is
Solve `("d"y)/("d"x) = xy + x + y + 1`