Advertisements
Advertisements
प्रश्न
Solve the following:
`("d"y)/("d"x) + y tan x = cos^3x`
उत्तर
It is of the form `("d"y)/("d"x) + "P"y` = Q
Here P = tan x
Q = cos3x
`int "Pd"x = int tan x "d"x`
= `int sinx/cosx "d"x`
= `- int (- sinx)/cosx "d"x`
= – log cos x
= log sec x
I.F = `"e"^(int Pdx)`
= `"e"^(log sec x)`
= sec x
The required solution is
y(I.F) = `int "Q" ("I.F") "d"x + "c"`
y(sec x) = `int cos^3x (sec x) "d"x + "c"`
y(sec x) = `int cos^3x 1/cosx "d"x + "c"`
y(sec x) = `int cos^2x "d"x + "c"`
y(sec x) = `int ((1 + cos 2x)/2) "d"x + "c"`
y(sec x) = `1/2 int (1 + cos2x) "d"x + "c"`
y(sec x) = `1/2 [x + (sin2x)/2] + "c"`
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`tan y ("d"y)/("d"x) = cos(x + y) + cos(x - y)`
Solve the following differential equation:
`2xy"d"x + (x^2 + 2y^2)"d"y` = 0
Choose the correct alternative:
The general solution of the differential equation `log(("d"y)/("d"x)) = x + y` is
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (∅(y/x))/(∅(y/x))` is
Choose the correct alternative:
If sin x is the integrating factor of the linear differential equation `("d"y)/("d"x) + "P"y = "Q"`, then P is
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following homogeneous differential equation:
`("d"y)/("d"x) = (3x - 2y)/(2x - 3y)`
Solve the following homogeneous differential equation:
The slope of the tangent to a curve at any point (x, y) on it is given by (y3 – 2yx2) dx + (2xy2 – x3) dy = 0 and the curve passes through (1, 2). Find the equation of the curve
Solve the following:
`("d"y)/("d"x) - y/x = x`