Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`tan y ("d"y)/("d"x) = cos(x + y) + cos(x - y)`
उत्तर
The equation can be written as
`tan y ("d"y)/("d"x)` = cos(x + y) + cos(x – y)
W.K.T cos(A + B) + cos(A – B) = 2 cos A cos B
Here A = x, B = y
∴ `tan y ("d"y)/("d"x)` = 2 cos x cos y
`tany/cosy` dy = 2 cos x dx
Taking integration on both sides, we get
`int tany/cosy "d"y = 2int cos x "d"x`
`2 int tan y sec y "d"y = 2 int c x "d"x`
sec y = 2 sin x + C
APPEARS IN
संबंधित प्रश्न
If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by `"M""dv"/"dt"` = F – kV, where k is a constant. Express V in terms of t given that V = 0 when t = 0
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
Solve the following differential equation:
`y"d"x + (1 + x^2)tan^-1x "d"y`= 0
Solve the following differential equation:
`(ydx - xdy) cot (x/y)` = ny2 dx
Solve the following differential equation:
`[x + y cos(y/x)] "d"x = x cos(y/x) "d"y`
Solve the following differential equation:
`y"e"^(x/y) "d"x = (x"e"^(x/y) + y) "d"y`
Solve the following differential equation:
(x2 + y2) dy = xy dx. It is given that y (1) = y(x0) = e. Find the value of x0
Choose the correct alternative:
The solution of `("d"y)/("d"x) = 2^(y - x)` is
Solve: ydx – xdy = 0 dy
Solve: `("d"y)/("d"x) + "e"^x + y"e"^x = 0`
Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following homogeneous differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy
Solve the following homogeneous differential equation:
The slope of the tangent to a curve at any point (x, y) on it is given by (y3 – 2yx2) dx + (2xy2 – x3) dy = 0 and the curve passes through (1, 2). Find the equation of the curve
Solve the following:
`x ("d"y)/("d"x) + 2y = x^4`
Solve the following:
`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`
Choose the correct alternative:
The integrating factor of the differential equation `("d"y)/("d"x) + "P"x` = Q is
Choose the correct alternative:
If sec2 x is an integrating factor of the differential equation `("d"y)/("d"x) + "P"y` = Q then P =
Solve `("d"y)/("d"x) + y cos x + x = 2 cos x`