Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
x cos y dy = ex(x log x + 1) dx
उत्तर
The equation can be written as
cos y dy = `"e"^x ((xlogx + 1))/x "d"x`
cos y dy = `"e"^x [(xlogx)/x + 1/x] "d"x`
cos y dy = `"e"^x [logx + 1/x] "d"x`
Taking integration on both sides, we get
`int cos y "d"y = int "e"^x [log x + 1/x] "d"x` ........(1)
R.H.S
`int "e"^x [log x + 1/x] "d"x`
⇒ Take f(x) = log x
f'(x) = `1/x`
This of the form `int "e"^x ["f"(x) + "f'"(x)] "d"x = "e"^x "f"(x) + "C"`
∴ `int "e"^x [log x + 1/x] "d"x = "e"^x lo x + "C"`
Substituting in (1), we get
sin y = ey log x + C
APPEARS IN
संबंधित प्रश्न
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
Find the equation of the curve whose slope is `(y - 1)/(x^2 + x)` and which passes through the point (1, 0)
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
`y"e"^(x/y) "d"x = (x"e"^(x/y) + y) "d"y`
Solve the following differential equation:
`(1 + 3"e"^(y/x))"d"y + 3"e"^(y/x)(1 - y/x)"d"x` = 0, given that y = 0 when x = 1
Solve the following differential equation:
(x2 + y2) dy = xy dx. It is given that y (1) = y(x0) = e. Find the value of x0
Choose the correct alternative:
The general solution of the differential equation `log(("d"y)/("d"x)) = x + y` is
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (∅(y/x))/(∅(y/x))` is
Solve: `("d"y)/("d"x) = "ae"^y`
Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) = x + y`
Solve the following:
`("d"y)/("d"x) + y tan x = cos^3x`
Choose the correct alternative:
The integrating factor of the differential equation `("d"y)/("d"x) + "P"x` = Q is
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Solve (x2 + y2) dx + 2xy dy = 0
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1
Solve `("d"y)/("d"x) + y cos x + x = 2 cos x`
Solve x2ydx – (x3 + y3) dy = 0