Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`(1 + 3"e"^(y/x))"d"y + 3"e"^(y/x)(1 - y/x)"d"x` = 0, given that y = 0 when x = 1
उत्तर
The given differential equation may be written as
`("d"y)/("d"x) = (-3"e"^(y/x)(1 - y/x))/((1 + 3"e"^(y/x))` ......(1)
This is a homogeneous differential equation,
Putting y = vx
⇒ `("d"y)/("d"x) = "v"(1) + x "dv"/("d"x)`
(1) ⇒ `"v" + x "dv"/("d"x) = (-3"e"^(y/x)(1 - y/x))/(1 + 3"e"^(y / x))`
= `(- 3"e"^((vx)/x) (1 - "v"))/(1 + 3"e"^((vx)/x)`
= `(- 3"e"^"v"(1 - "v"))/(1 + 3"e"^((vx)/x)`
`x "dv"/("d"x) = (- 3"e"^"v" + 3"e"^"v" "v")/((1 + 3"e"^"v")) - "v"`
= `(- 3"e"^"v" + 3"e"^"v" "v" - "v"(1 + 3"e"^"v"))/(1 + 3"e"^"v")`
= `(- 3"e"^"v" + 3"e"^"v" "v" - "v" - 3"e"^"v" "v")/(1 + 3"e"^"v")`
`x "dv"/("d"x) = (- 3"e"^"v" - "v")/(1 + 3"e"^"v")`
`((1 + 3"e"^"v"))/(- 3"e"^"v" - "v") "dv" = ("d"x)/x`
`- ((1 + 3"e"^"v"))/(("v" + 3"e"^"v")) "dv" = ("d"x)/x`
`- int ((1 + 3"e"^"v"))/("v" + 3"e"^"v") "dv" - int ("d"x)/x = log ("c")`
`- int ((1 + 3"e"^"v"))/("v" + 3"e"^"v") "dv" + int ("d"x)/x = log ("c")`
`log("v" + 3"e"^"v") + log(x) = log("c")`
`log ("v" + 3"e"^"v")x = log "c"`
`x("v" + 3"e"^"v") = "c"`
`x(y/x + 3"e"^(y/x))` = c .........`(∵ "v" = y/x)`
`(xy)/x + 3x"e"^(y/x)` = c
`y + 3x"e"^(y/x)` = c
Given that y = 0 when x = 1
0 + 3(1) e° = c
3 = c
∴ `y + 3x"e"^(y/x)` = 3 is a required solution.
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
(ey + 1)cos x dx + ey sin x dy = 0
Solve the following differential equation:
`("d"y)/("d"x) = tan^2(x + y)`
Solve the following differential equation:
`[x + y cos(y/x)] "d"x = x cos(y/x) "d"y`
Solve the following differential equation:
(x2 + y2) dy = xy dx. It is given that y (1) = y(x0) = e. Find the value of x0
Solve: `(1 + x^2)/(1 + y) = xy ("d"y)/("d"x)`
Solve: `y(1 - x) - x ("d"y)/("d"x)` = 0
Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0
Solve: `log(("d"y)/("d"x))` = ax + by
Solve the following homogeneous differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy
Solve the following:
`x ("d"y)/("d"x) + 2y = x^4`
Solve the following:
`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`
Choose the correct alternative:
The integrating factor of the differential equation `("d"y)/("d"x) + "P"x` = Q is
Choose the correct alternative:
A homogeneous differential equation of the form `("d"x)/("d"y) = f(x/y)` can be solved by making substitution
Choose the correct alternative:
The variable separable form of `("d"y)/("d"x) = (y(x - y))/(x(x + y))` by taking y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)` is
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (f(y/x))/(f"'"(y/x))` is
Form the differential equation having for its general solution y = ax2 + bx
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1
Solve `("d"y)/("d"x) = xy + x + y + 1`