मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Solve the following differential equation: (x2 + y2) dy = xy dx. It is given that y (1) = y(x0) = e. Find the value of x0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

(x2 + y2) dy = xy dx. It is given that y (1) = y(x0) = e. Find the value of x0

बेरीज

उत्तर

The given differential equation is of the form

`("d"y)/("d"x) = (xy)/(x^2 + y^2)`  ........(1)

This is a homogeneous differential equation.

Putting y = vx

`("d"y)/("d"x) = "v"(1) + x "dv"/("d"x)`

`("d"y)/("d"x) = "v" + x "dv"/("d"x)`

Now equation (1) becomes,

`"v" + x "dv"/("d"x) = (x("v"x))/(x^2 + ("v"x)^2) = (x^2"v")/(x^2[1 + "v"^2])`

`x "dv"/("d"x) = "v"/(1 + "v"^2) - "v"`

`x "dv"/("d"x) = ("v" - "v" - "v"^3)/(1 + "v"^2)`

`x "dv"/("d"x) = (-"v"^3)/(1 + "v"^2)`

`((1 + "v"^2)"dv")/"v"^3 = (-"d"x)/x`

`1/"v"^3 "dv" + "v"^2/"v"^3 "dv" = (- "d"x)/x`

`int "v"^-3 "dv" + int 1/"v" "dv" = - int ("d"x)/x`

`"v"^-2/(-2) + log "v" = - logx + log"c"`

`1/(2"v"^2) - log"v" = log x - log "c"`

`1/(2"v"^2) = logx - log"c" + log"v"`

`1/(2"v"^2) = log  ("v"x)/"c"`

∵ y = vx

⇒ v = `y/x`

∴ `x^2/(2y^2) = log y/"c"`

`"e"^(x^2/(2y^2)) = y/"c"`

⇒ y = `"Ce"^(x^2/(2y^2))` ........(2)

Given y(1) = 1

i.e., when x = 1, y = 1

(2) ⇒ 1 = `"Ce"^(1/2)`

C = `1/sqrt("e")`

Now (2 becomes y = `1/sqrt("e") "e"^(x^3/(2y^2))`

Also given y(x0) = e

i.e., when x = x0, y = e

∴ e = `1/sqrt("e") "e"^((x_0^2)/(2"e"^2))`

`"e"sqrt("e") = "e"^((x_0^2)/(2"e"^2))`

`log "e"sqrt("e") = (x_0^2)/(2"e"^2)`

`log "e"^(3/2) = (x_0^2)/(2"e"^2)`

`3/2 log "e" = (x_0^2)/(2"e"^2)`

`x_0^2 = 3"e"^2`

x0 = `+-  sqrt(3)*"e"`

shaalaa.com
Solution of First Order and First Degree Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Ordinary Differential Equations - Exercise 10.6 [पृष्ठ १६६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 10 Ordinary Differential Equations
Exercise 10.6 | Q 8 | पृष्ठ १६६

संबंधित प्रश्‍न

Solve the following differential equation:

`(ydx - xdy) cot (x/y)` = ny2 dx


Solve the following differential equation:

`(x^3 + y^3)"d"y - x^2 y"d"x` = 0


Solve the following differential equation:

`(y^2 - 2xy) "d"x = (x^2 - 2xy) "d"y`


Solve: `("d"y)/("d"x) = "ae"^y`


Solve: `("d"y)/("d"x) + "e"^x + y"e"^x = 0`


Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0


Solve: (1 – x) dy – (1 + y) dx = 0


Solve the following homogeneous differential equation:

`x ("d"y)/("d"x) = x + y`


Solve the following homogeneous differential equation:

(y2 – 2xy) dx = (x2 – 2xy) dy


Solve the following homogeneous differential equation:

An electric manufacturing company makes small household switches. The company estimates the marginal revenue function for these switches to be (x2 + y2) dy = xy dx where x represents the number of units (in thousands). What is the total revenue function?


Solve the following:

`("d"y)/("d"x) - y/x = x`


Solve the following:

`("d"y)/(""dx) + y cos x = sin x cos x`


Solve the following:

`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`


Solve the following:

`("d"y)/("d"x) + y/x = x'e"^x`


Solve the following:

`("d"y)/("d"x) + y tan x = cos^3x`


Solve the following:

If `("d"y)/("d"x) + 2 y tan x = sin x` and if y = 0 when x = `pi/3` express y in term of x


Choose the correct alternative:

The solution of the differential equation `("d"y)/("d"x) + "P"y` = Q where P and Q are the function of x is


Choose the correct alternative:

The differential equation of x2 + y2 = a2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×