Advertisements
Advertisements
प्रश्न
Solve (x2 + y2) dx + 2xy dy = 0
उत्तर
(x2 + y2) dx + 2xy dy = 0
2xy dy = – (x2 + y2) dx
`("d"y)/("d"x) = (-(x^2 + y^2))/(2xy)` ........(1)
This is a homogeneous differential equation
Put y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)`
∴ (1) ⇒ `"v" + x "dv"/("d"x) = (-(x^2 + "v"^2x^2))/(2x("v"x))`
`"v" + x "dv"/("d"x) = (-x^2(1 + "v"^2))/(2"v"x^2)`
`"v" + x "dv"/("d"x) = (-(1 + "v"^2))/(2"v")`
`x "dv"/("d"x) = (-(1 + "v"^2)/(2"v") - "v"`
`x "dv"/("d"x) = (-1 - "v"^2 - 2"v"^2)/(2"v")`
= `(-3"v"^2 - 1)/(2"v")`
= `(-(3"v"^2+ 1))/(2"v")`
`((2"v"))/((3"v"^2 + 1)) "dv" = - 1/x "d"x`
Integrating on both sides
`int ((2"v"))/((3"v"^2 + 1)) "dv" = - int 1/x "d"x`
`1/3 int (6"v")/((3"v"^2 + 1)) "dv" = - int 1/x "d"x`
`1/3 log (3"v"^2 + 1) = - log x + log "c"`
`log (3"v"^2 + 1)^(1/3) + log x = log "c"`
`log x (3"v"^2 + 1)^(1/3) = log "c"`
⇒ `x(3"v"^2 + 1)^(1/3)` = c
⇒ `x[(3y^2)/x^3 + 1]^(1/3)` = c
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = sqrt((1 - y^2)/(1 - x^2)`
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (∅(y/x))/(∅(y/x))` is
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Solve: `("d"y)/("d"x) = "ae"^y`
Solve: `y(1 - x) - x ("d"y)/("d"x)` = 0
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following homogeneous differential equation:
The slope of the tangent to a curve at any point (x, y) on it is given by (y3 – 2yx2) dx + (2xy2 – x3) dy = 0 and the curve passes through (1, 2). Find the equation of the curve
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Choose the correct alternative:
A homogeneous differential equation of the form `("d"y)/("d"x) = f(y/x)` can be solved by making substitution
Solve `("d"y)/("d"x) = xy + x + y + 1`