Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = sqrt((1 - y^2)/(1 - x^2)`
उत्तर
The equation can be written as
`("d"y)/sqrt(1 - y^2) = ("d"x)/sqrt(1 - x^2)`
Taking Integration on both sides, we get
`int ("d"y)/sqrt(1 - y^2) = int ("d"x)/sqrt(1 - x^2)`
sin–1y = sin–1x + C
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
(ey + 1)cos x dx + ey sin x dy = 0
Solve the following differential equation:
x cos y dy = ex(x log x + 1) dx
Solve the following differential equation:
`("d"y)/("d"x) = tan^2(x + y)`
Solve the following differential equation:
`(x^3 + y^3)"d"y - x^2 y"d"x` = 0
Choose the correct alternative:
The solution of `("d"y)/("d"x) + "p"(x)y = 0` is
Choose the correct alternative:
The solution of `("d"y)/("d"x) = 2^(y - x)` is
Solve: `("d"y)/("d"x) = "ae"^y`
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) = x + y`
Solve the following homogeneous differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy
Solve the following:
`("d"y)/("d"x) + y/x = x'e"^x`
Choose the correct alternative:
If y = ex + c – c3 then its differential equation is
Choose the correct alternative:
If sec2 x is an integrating factor of the differential equation `("d"y)/("d"x) + "P"y` = Q then P =
Choose the correct alternative:
The differential equation of x2 + y2 = a2
Choose the correct alternative:
A homogeneous differential equation of the form `("d"x)/("d"y) = f(x/y)` can be solved by making substitution
Choose the correct alternative:
The variable separable form of `("d"y)/("d"x) = (y(x - y))/(x(x + y))` by taking y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)` is
Form the differential equation having for its general solution y = ax2 + bx
A manufacturing company has found that the cost C of operating and maintaining the equipment is related to the length ’m’ of intervals between overhauls by the equation `"m"^2 "dC"/"dm" + 2"mC"` = 2 and c = 4 and when = 2. Find the relationship between C and m
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1
Solve x2ydx – (x3 + y3) dy = 0