Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = sqrt((1 - y^2)/(1 - x^2)`
उत्तर
The equation can be written as
`("d"y)/sqrt(1 - y^2) = ("d"x)/sqrt(1 - x^2)`
Taking Integration on both sides, we get
`int ("d"y)/sqrt(1 - y^2) = int ("d"x)/sqrt(1 - x^2)`
sin–1y = sin–1x + C
APPEARS IN
संबंधित प्रश्न
Find the equation of the curve whose slope is `(y - 1)/(x^2 + x)` and which passes through the point (1, 0)
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
`tan y ("d"y)/("d"x) = cos(x + y) + cos(x - y)`
Solve the following differential equation:
`[x + y cos(y/x)] "d"x = x cos(y/x) "d"y`
Solve the following differential equation:
`(x^3 + y^3)"d"y - x^2 y"d"x` = 0
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Solve: `("d"y)/("d"x) = "ae"^y`
Solve: `y(1 - x) - x ("d"y)/("d"x)` = 0
Solve: (1 – x) dy – (1 + y) dx = 0
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following homogeneous differential equation:
`(x - y) ("d"y)/("d"x) = x + 3y`
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) - y = sqrt(x^2 + y^2)`
Solve the following:
`("d"y)/(""dx) + y cos x = sin x cos x`
Solve the following:
`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`
Choose the correct alternative:
If sec2 x is an integrating factor of the differential equation `("d"y)/("d"x) + "P"y` = Q then P =
Choose the correct alternative:
A homogeneous differential equation of the form `("d"y)/("d"x) = f(y/x)` can be solved by making substitution
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (f(y/x))/(f"'"(y/x))` is
Solve (x2 + y2) dx + 2xy dy = 0