Advertisements
Advertisements
प्रश्न
Find the equation of the curve whose slope is `(y - 1)/(x^2 + x)` and which passes through the point (1, 0)
उत्तर
Given the slope of the equation be `(y - 1)/(x^2 + x)`
`("d"y)/("d"x) = (y - 1)/(x^2 + x)`
THe equation can be written as
`("d"y)/(y - 1) = ("d"x)/(x^2 + x)` .......(1)
Take `1/(x^2 + x) = 1/(x(x + 1)) = "A"/x + "B"/(x + 1)` .......[Solve by pratical fraction]
`1/(x(x + 1)) = ("A"(x + 1) + "B"(x))/(x(x + 1))`
1 = A(x + 1) + B(x)
Put x = – 1, Put x = 0
1 = A(0) + B(– 1), 1 = A(0 + 1) + B(0)
1 = – B, 1 = A
B = – 1, A = 1
∴ `1/(x^2 + x) = 1/x + 1/(x + 1)` .........(2)
Substituting equation (2) in equation (1), we get
`("d"y)/(y - 1) = ("d"x)/x + ("d"x)/(x + 1)`
Taking integrating on both sides, we get
log(y – 1) = log x – log(x + 1) + log C
log(y – 1) = log C + log x – log(x + 1)
= log Cx – log(x + 1)
log(y – 1) = `log (("Cx")/(x + 1))`
y – 1= `"Cx"/(x + 1)` .........(3)
The curve passes through (1, 0), we get
0 – 1 = `("C"(1))/(1 + 1)`
– 1 = `"C"/2`
– 2 = C
(3) ⇒ y – 1= `- (2x)/(x + 1)`
y = `1 - (2x)/(x + 1)`
= `(x + 1 - 2x)/(x + 1)`
= `(1 - x)/(x + 1)`
∴ y = `(1 - x)/(x + 1)`
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
`("d"y)/("d"x) = tan^2(x + y)`
Choose the correct alternative:
The solution of `("d"y)/("d"x) + "p"(x)y = 0` is
Choose the correct alternative:
The solution of `("d"y)/("d"x) = 2^(y - x)` is
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Solve: ydx – xdy = 0 dy
Solve: `("d"y)/("d"x) + "e"^x + y"e"^x = 0`
Solve the following homogeneous differential equation:
`(x - y) ("d"y)/("d"x) = x + 3y`
Solve the following homogeneous differential equation:
The slope of the tangent to a curve at any point (x, y) on it is given by (y3 – 2yx2) dx + (2xy2 – x3) dy = 0 and the curve passes through (1, 2). Find the equation of the curve
Solve the following homogeneous differential equation:
An electric manufacturing company makes small household switches. The company estimates the marginal revenue function for these switches to be (x2 + y2) dy = xy dx where x represents the number of units (in thousands). What is the total revenue function?
Solve the following:
A bank pays interest by continuous compounding, that is by treating the interest rate as the instantaneous rate of change of principal. A man invests ₹ 1,00,000 in the bank deposit which accrues interest, 8% per year compounded continuously. How much will he get after 10 years? (e0.8 = 2.2255)
Choose the correct alternative:
The integrating factor of the differential equation `("d"y)/("d"x) + "P"x` = Q is
Choose the correct alternative:
The differential equation of y = mx + c is (m and c are arbitrary constants)
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) + "P"y` = Q where P and Q are the function of x is
Choose the correct alternative:
Which of the following is the homogeneous differential equation?
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (f(y/x))/(f"'"(y/x))` is
Form the differential equation having for its general solution y = ax2 + bx
Solve `("d"y)/("d"x) + y cos x + x = 2 cos x`
Solve x2ydx – (x3 + y3) dy = 0