English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the equation of the curve whose slope is y-1x2+x and which passes through the point (1, 0) - Mathematics

Advertisements
Advertisements

Question

Find the equation of the curve whose slope is `(y - 1)/(x^2 + x)` and which passes through the point (1, 0)

Sum

Solution

Given the slope of the equation be `(y - 1)/(x^2 + x)`

`("d"y)/("d"x) = (y - 1)/(x^2 + x)`

THe equation can be written as

`("d"y)/(y - 1) = ("d"x)/(x^2 + x)`   .......(1)

Take `1/(x^2 + x) = 1/(x(x + 1)) = "A"/x + "B"/(x + 1)`  .......[Solve by pratical fraction]

`1/(x(x + 1)) = ("A"(x + 1) + "B"(x))/(x(x + 1))`

1 = A(x + 1) + B(x)

Put x = – 1, Put x = 0

1 = A(0) + B(– 1), 1 = A(0 + 1) + B(0)

1 = – B, 1 = A

B = – 1, A = 1

∴ `1/(x^2 + x) = 1/x + 1/(x + 1)` .........(2)

Substituting equation (2) in equation (1), we get

`("d"y)/(y - 1) = ("d"x)/x + ("d"x)/(x + 1)`

Taking integrating on both sides, we get

log(y – 1) = log x – log(x + 1) + log C

log(y – 1) = log C + log x – log(x + 1)

= log Cx – log(x + 1)

log(y – 1) = `log (("Cx")/(x + 1))`

y – 1= `"Cx"/(x + 1)` .........(3)

The curve passes through (1, 0), we get

0 – 1 = `("C"(1))/(1 + 1)`

– 1 = `"C"/2`

– 2 = C

(3) ⇒ y – 1= `- (2x)/(x + 1)`

y = `1 - (2x)/(x + 1)`

= `(x + 1 - 2x)/(x + 1)`

= `(1 - x)/(x + 1)`

∴ y = `(1 - x)/(x + 1)`

shaalaa.com
Solution of First Order and First Degree Differential Equations
  Is there an error in this question or solution?
Chapter 10: Ordinary Differential Equations - Exercise 10.5 [Page 161]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 10 Ordinary Differential Equations
Exercise 10.5 | Q 3 | Page 161

RELATED QUESTIONS

If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by `"M""dv"/"dt"` = F – kV, where k is a constant. Express V in terms of t given that V = 0 when t = 0


Solve the following differential equation:

`("d"y)/("d"x) = sqrt((1 - y^2)/(1 - x^2)`


Solve the following differential equation:

`("d"y)/("d"x) - xsqrt(25 - x^2)` = 0


Solve the following differential equation:

`(x^3 + y^3)"d"y - x^2 y"d"x` = 0


Choose the correct alternative:

The general solution of the differential equation `log(("d"y)/("d"x)) = x + y` is


Solve: `(1 + x^2)/(1 + y) = xy ("d"y)/("d"x)`


Solve the following homogeneous differential equation:

An electric manufacturing company makes small household switches. The company estimates the marginal revenue function for these switches to be (x2 + y2) dy = xy dx where x represents the number of units (in thousands). What is the total revenue function?


Solve the following:

`("d"y)/("d"x) - y/x = x`


Solve the following:

`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`


Solve the following:

If `("d"y)/("d"x) + 2 y tan x = sin x` and if y = 0 when x = `pi/3` express y in term of x


Choose the correct alternative:

Solution of `("d"x)/("d"y) + "P"x = 0`


Choose the correct alternative:

If sec2 x is an integrating factor of the differential equation `("d"y)/("d"x) + "P"y` = Q then P = 


Form the differential equation having for its general solution y = ax2 + bx


Solve (x2 + y2) dx + 2xy dy = 0


Solve `x ("d"y)/(d"x) + 2y = x^4`


Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1


Solve `("d"y)/("d"x) + y cos x + x = 2 cos x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×