Advertisements
Advertisements
Question
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
Solution
Given equation is `"v" (dv)/(dx) = "g"(1 - v^2/k^2)`
⇒ `v (dv)/(dx)= "g"((k^2 - v^2)/k^2)`
The given equation can be written as
`(v dv)/(k^2 - v^2) = "g"/k^2 "d"x`
Multiply by – 2 on both sides, we get
`(- 2v)/(k^2 - v^2) "d"v = (- 2"g")/(k^2) "d"x`
Taking integrating on both sides, we get
`int (-2v)/(k^2 - v^2) "d"v = int (- 2"g")/k^2 "d"x`
`log ("k"^2 - "v"^2) = (- 2"g"x)/k^2 + log "C"`
`log ("k"^2 - "v"^2) - log "C" = - (2"g"x)/k^2`
`log((k^2 - v^2)/"C") = - (2"g"x)/k^2`
`(k^2 - v^2)/"C" = "e"^(- (2gx)/k^2)`
k2 – v2 = `"Ce"^((-2gx)/k^2)` .......(1)
Initial condition:
Given v = 0
when x = 0
we get k2(0)2 = `"Ce" (-2g(0))/k^2`
k2 = Ce°
k2 = C
(1) ⇒ k2 – v2 = `"k"^2"e"^((-2gx)/"k"^2)`
`"k"^2 - "k"^2"e" (-2gx)/"k"^2` = v2
`"k" [1 - "e" (-2gx)/"k"^2]` = v2
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation:
`y"d"x + (1 + x^2)tan^-1x "d"y`= 0
Solve the following differential equation:
`(ydx - xdy) cot (x/y)` = ny2 dx
Solve the following differential equation:
`("d"y)/("d"x) = tan^2(x + y)`
Solve the following differential equation:
`[x + y cos(y/x)] "d"x = x cos(y/x) "d"y`
Solve the following differential equation:
(x2 + y2) dy = xy dx. It is given that y (1) = y(x0) = e. Find the value of x0
Choose the correct alternative:
If sin x is the integrating factor of the linear differential equation `("d"y)/("d"x) + "P"y = "Q"`, then P is
Choose the correct alternative:
The number of arbitrary constants in the general solutions of order n and n +1are respectively
Solve : cos x(1 + cosy) dx – sin y(1 + sinx) dy = 0
Solve: `("d"y)/("d"x) = y sin 2x`
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following homogeneous differential equation:
An electric manufacturing company makes small household switches. The company estimates the marginal revenue function for these switches to be (x2 + y2) dy = xy dx where x represents the number of units (in thousands). What is the total revenue function?
Solve the following:
`("d"y)/(""dx) + y cos x = sin x cos x`
Solve the following:
`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`
Solve the following:
If `("d"y)/("d"x) + 2 y tan x = sin x` and if y = 0 when x = `pi/3` express y in term of x
Choose the correct alternative:
The integrating factor of the differential equation `("d"y)/("d"x) + "P"x` = Q is
Choose the correct alternative:
The differential equation of y = mx + c is (m and c are arbitrary constants)
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Choose the correct alternative:
The differential equation of x2 + y2 = a2
Choose the correct alternative:
Which of the following is the homogeneous differential equation?
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (f(y/x))/(f"'"(y/x))` is