Advertisements
Advertisements
Question
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solution
The gradient of the curve at P(x, y)
`("d"y)/("d"x) = (x - "a")/(y - "b")`
(y – b) dy = (x – a) dx
Integrating on both sides
`int (y - "b") "d"y = int (x - "a") "d"x`
⇒ `(y -- "b")^2/2 = (x - )^2/2 + "c"`
Multiply each term by 2
∴ (y – b)2 = (x – a)2 + 2c .........(1)
Since the curve passes through the origin (0, 0)
Equation (1)
(0 – b)2 = (0 – a)2 + 2c
b2 = a2 + 2c
b2 – a2 = 2c .......(2)
Substitute equation (2) and (1)
(y – b)2 = (x – a)2 + b2 – a2
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation:
`y"d"x + (1 + x^2)tan^-1x "d"y`= 0
Solve the following differential equation:
`sin ("d"y)/("d"x)` = a, y(0) = 1
Solve the following differential equation:
`(1 + 3"e"^(y/x))"d"y + 3"e"^(y/x)(1 - y/x)"d"x` = 0, given that y = 0 when x = 1
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Solve: `(1 + x^2)/(1 + y) = xy ("d"y)/("d"x)`
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) - y = sqrt(x^2 + y^2)`
Solve the following homogeneous differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) + "P"y` = Q where P and Q are the function of x is
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1
Solve `("d"y)/("d"x) + y cos x + x = 2 cos x`