Advertisements
Advertisements
प्रश्न
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
उत्तर
Given equation is `"v" (dv)/(dx) = "g"(1 - v^2/k^2)`
⇒ `v (dv)/(dx)= "g"((k^2 - v^2)/k^2)`
The given equation can be written as
`(v dv)/(k^2 - v^2) = "g"/k^2 "d"x`
Multiply by – 2 on both sides, we get
`(- 2v)/(k^2 - v^2) "d"v = (- 2"g")/(k^2) "d"x`
Taking integrating on both sides, we get
`int (-2v)/(k^2 - v^2) "d"v = int (- 2"g")/k^2 "d"x`
`log ("k"^2 - "v"^2) = (- 2"g"x)/k^2 + log "C"`
`log ("k"^2 - "v"^2) - log "C" = - (2"g"x)/k^2`
`log((k^2 - v^2)/"C") = - (2"g"x)/k^2`
`(k^2 - v^2)/"C" = "e"^(- (2gx)/k^2)`
k2 – v2 = `"Ce"^((-2gx)/k^2)` .......(1)
Initial condition:
Given v = 0
when x = 0
we get k2(0)2 = `"Ce" (-2g(0))/k^2`
k2 = Ce°
k2 = C
(1) ⇒ k2 – v2 = `"k"^2"e"^((-2gx)/"k"^2)`
`"k"^2 - "k"^2"e" (-2gx)/"k"^2` = v2
`"k" [1 - "e" (-2gx)/"k"^2]` = v2
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`y"d"x + (1 + x^2)tan^-1x "d"y`= 0
Solve the following differential equation:
`[x + y cos(y/x)] "d"x = x cos(y/x) "d"y`
Solve the following differential equation:
`x ("d"y)/("d"x) = y - xcos^2(y/x)`
Solve the following differential equation:
`(1 + 3"e"^(y/x))"d"y + 3"e"^(y/x)(1 - y/x)"d"x` = 0, given that y = 0 when x = 1
Solve the following differential equation:
(x2 + y2) dy = xy dx. It is given that y (1) = y(x0) = e. Find the value of x0
Choose the correct alternative:
The solution of `("d"y)/("d"x) = 2^(y - x)` is
Choose the correct alternative:
If sin x is the integrating factor of the linear differential equation `("d"y)/("d"x) + "P"y = "Q"`, then P is
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Solve: `(1 + x^2)/(1 + y) = xy ("d"y)/("d"x)`
Solve: ydx – xdy = 0 dy
Solve: `("d"y)/("d"x) + "e"^x + y"e"^x = 0`
Solve the following:
`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`
Solve the following:
`("d"y)/("d"x) + y tan x = cos^3x`
Choose the correct alternative:
If y = ex + c – c3 then its differential equation is
Choose the correct alternative:
A homogeneous differential equation of the form `("d"y)/("d"x) = f(y/x)` can be solved by making substitution
Choose the correct alternative:
The variable separable form of `("d"y)/("d"x) = (y(x - y))/(x(x + y))` by taking y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)` is
Solve `x ("d"y)/(d"x) + 2y = x^4`
A manufacturing company has found that the cost C of operating and maintaining the equipment is related to the length ’m’ of intervals between overhauls by the equation `"m"^2 "dC"/"dm" + 2"mC"` = 2 and c = 4 and when = 2. Find the relationship between C and m