Advertisements
Advertisements
Question
Solve: `("d"y)/("d"x) = y sin 2x`
Solution
`("d"y)/("d"x) = y sin 2x`
⇒ `("d"y)/y = sin 2x "d"x`
Integrating on both sides
`int 1/y "d"y = int sin 2x "d"x`
⇒ log y = `(- cos 2x)/2 + "c"`
APPEARS IN
RELATED QUESTIONS
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
Solve the following differential equation:
`("d"y)/("d"x) = tan^2(x + y)`
Solve the following differential equation:
`y"e"^(x/y) "d"x = (x"e"^(x/y) + y) "d"y`
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (∅(y/x))/(∅(y/x))` is
Solve: `("d"y)/("d"x) + "e"^x + y"e"^x = 0`
Solve: (1 – x) dy – (1 + y) dx = 0
Solve the following homogeneous differential equation:
The slope of the tangent to a curve at any point (x, y) on it is given by (y3 – 2yx2) dx + (2xy2 – x3) dy = 0 and the curve passes through (1, 2). Find the equation of the curve
Solve the following:
`("d"y)/("d"x) + y tan x = cos^3x`
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1
Solve `("d"y)/("d"x) = xy + x + y + 1`