Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
`("d"y)/("d"x) = tan^2(x + y)`
उत्तर
Given `("d"y)/("d"x) = tan^2(x + y)` .......(1)
Take x + y = t
`1 + ("d"y)/("d"x) = "dt"/("d"x)`
`("d"y)/("d"x) = "dt"/("d"x) - 1`
∴ Equation (1) can be written as
`("d"y)/("d"x) = tan^2(x + y)`
`"dt"/("d"x) - 1 = tan^2"t"`
`"dt"/("d"x) = tan^2"t" + 1`
`"dt"/("d"x) = sec^2"t"` ........(∵ 1 +tan2θ = sec2θ)
`"dt"/(sec^2"t")` = dx
cos2t dt = dx
`((1 + cos^2"t")/2) dt"` = dx ......`(∵ cos^2theta = (1 + cos^2theta)/2)`
Takig integration on both sides, we get
`1/2 int(1 + cos^2"t") "dt"= int "d"x`
`1/2["t" + (sin^2"t")/2]` = x + c
`1/2["t" + (2sin"t" cos"t")/2]` = x + c
`1/2["t" + sin"t" cos"t"]` = x + c .......(∵ t = x + y)
`1/2[x + y + sin(x + y) cos(x + y)]` = x + c
APPEARS IN
संबंधित प्रश्न
Find the equation of the curve whose slope is `(y - 1)/(x^2 + x)` and which passes through the point (1, 0)
Solve the following differential equation:
`("d"y)/("d"x) = sqrt((1 - y^2)/(1 - x^2)`
Solve the following differential equation:
`y"d"x + (1 + x^2)tan^-1x "d"y`= 0
Solve the following differential equation:
`sin ("d"y)/("d"x)` = a, y(0) = 1
Solve the following differential equation:
`tan y ("d"y)/("d"x) = cos(x + y) + cos(x - y)`
Solve the following differential equation:
`[x + y cos(y/x)] "d"x = x cos(y/x) "d"y`
Solve the following differential equation:
`x ("d"y)/("d"x) = y - xcos^2(y/x)`
Choose the correct alternative:
The general solution of the differential equation `log(("d"y)/("d"x)) = x + y` is
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Solve: `y(1 - x) - x ("d"y)/("d"x)` = 0
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) - y = sqrt(x^2 + y^2)`
Solve the following homogeneous differential equation:
`("d"y)/("d"x) = (3x - 2y)/(2x - 3y)`
Solve the following:
`("d"y)/("d"x) + y/x = x'e"^x`
Solve the following:
`("d"y)/("d"x) + y/x = x"e"^x`
Choose the correct alternative:
The differential equation of y = mx + c is (m and c are arbitrary constants)
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Form the differential equation having for its general solution y = ax2 + bx
Solve x2ydx – (x3 + y3) dy = 0
Solve `("d"y)/("d"x) = xy + x + y + 1`