Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
The general solution of the differential equation `log(("d"y)/("d"x)) = x + y` is
विकल्प
ex + ey = C
ex + e-y = C
e-x + ey = C
e-x + e-y = C
उत्तर
ex + e-y = C
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`sin ("d"y)/("d"x)` = a, y(0) = 1
Solve the following differential equation:
`tan y ("d"y)/("d"x) = cos(x + y) + cos(x - y)`
Solve the following differential equation:
`("d"y)/("d"x) = tan^2(x + y)`
Solve the following differential equation:
`2xy"d"x + (x^2 + 2y^2)"d"y` = 0
Solve the following differential equation:
`(1 + 3"e"^(y/x))"d"y + 3"e"^(y/x)(1 - y/x)"d"x` = 0, given that y = 0 when x = 1
Choose the correct alternative:
The number of arbitrary constants in the particular solution of a differential equation of third order is
Solve: `y(1 - x) - x ("d"y)/("d"x)` = 0
Find the curve whose gradient at any point P(x, y) on it is `(x - "a")/(y - "b")` and which passes through the origin
Solve the following homogeneous differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy
Solve the following:
`("d"y)/(""dx) + y cos x = sin x cos x`
Solve the following:
`x ("d"y)/("d"x) + 2y = x^4`
Solve the following:
`("d"y)/("d"x) + y tan x = cos^3x`
Solve the following:
A bank pays interest by continuous compounding, that is by treating the interest rate as the instantaneous rate of change of principal. A man invests ₹ 1,00,000 in the bank deposit which accrues interest, 8% per year compounded continuously. How much will he get after 10 years? (e0.8 = 2.2255)
Choose the correct alternative:
Solution of `("d"x)/("d"y) + "P"x = 0`
Choose the correct alternative:
The differential equation of x2 + y2 = a2
Choose the correct alternative:
The variable separable form of `("d"y)/("d"x) = (y(x - y))/(x(x + y))` by taking y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)` is
Choose the correct alternative:
The solution of the differential equation `("d"y)/("d"x) = y/x + (f(y/x))/(f"'"(y/x))` is