Advertisements
Advertisements
प्रश्न
Solve (x2 + y2) dx + 2xy dy = 0
उत्तर
(x2 + y2) dx + 2xy dy = 0
2xy dy = – (x2 + y2) dx
`("d"y)/("d"x) = (-(x^2 + y^2))/(2xy)` ........(1)
This is a homogeneous differential equation
Put y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)`
∴ (1) ⇒ `"v" + x "dv"/("d"x) = (-(x^2 + "v"^2x^2))/(2x("v"x))`
`"v" + x "dv"/("d"x) = (-x^2(1 + "v"^2))/(2"v"x^2)`
`"v" + x "dv"/("d"x) = (-(1 + "v"^2))/(2"v")`
`x "dv"/("d"x) = (-(1 + "v"^2)/(2"v") - "v"`
`x "dv"/("d"x) = (-1 - "v"^2 - 2"v"^2)/(2"v")`
= `(-3"v"^2 - 1)/(2"v")`
= `(-(3"v"^2+ 1))/(2"v")`
`((2"v"))/((3"v"^2 + 1)) "dv" = - 1/x "d"x`
Integrating on both sides
`int ((2"v"))/((3"v"^2 + 1)) "dv" = - int 1/x "d"x`
`1/3 int (6"v")/((3"v"^2 + 1)) "dv" = - int 1/x "d"x`
`1/3 log (3"v"^2 + 1) = - log x + log "c"`
`log (3"v"^2 + 1)^(1/3) + log x = log "c"`
`log x (3"v"^2 + 1)^(1/3) = log "c"`
⇒ `x(3"v"^2 + 1)^(1/3)` = c
⇒ `x[(3y^2)/x^3 + 1]^(1/3)` = c
APPEARS IN
संबंधित प्रश्न
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
Solve the following differential equation:
`("d"y)/("d"x) = sqrt((1 - y^2)/(1 - x^2)`
Solve the following differential equation:
`("d"y)/("d"x) = "e"^(x + y) - x^3"e"^y`
Solve the following differential equation:
`(y^2 - 2xy) "d"x = (x^2 - 2xy) "d"y`
Solve the following differential equation:
(x2 + y2) dy = xy dx. It is given that y (1) = y(x0) = e. Find the value of x0
Choose the correct alternative:
The solution of `("d"y)/("d"x) = 2^(y - x)` is
Solve: `("d"y)/("d"x) = y sin 2x`
Solve `x ("d"y)/(d"x) + 2y = x^4`
Solve (D2 – 3D + 2)y = e4x given y = 0 when x = 0 and x = 1
Solve `("d"y)/("d"x) = xy + x + y + 1`