Advertisements
Advertisements
प्रश्न
Solve `x ("d"y)/(d"x) + 2y = x^4`
उत्तर
`x ("d"y)/(d"x) + 2y = x^4`
÷ each term by x
`("d"y)/("d"x) + (2y)/x = x^2`
This is of the form `("d"y)/("d"x) + "P"y` = Q
Here P = `2/x` and Q = x3
`int "Pd"x = 2int1/x "d"x`
= 2 log x
= log x2
I.F = `"e"^(intpdx)`
=`"e"^(logx^2)`
= x2
This solution is
y(I.F) = `int "Q"x ("I.F") d"x + "c"`
y(x2) = `int (x^3 xx x^2) 'd"x + "c"`
yx2 = `int x^5 "d"x + "c"`
⇒ yx2 = `x^6/6 + "c"`
APPEARS IN
संबंधित प्रश्न
If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by `"M""dv"/"dt"` = F – kV, where k is a constant. Express V in terms of t given that V = 0 when t = 0
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
Solve the following differential equation:
`("d"y)/("d"x) = sqrt((1 - y^2)/(1 - x^2)`
Solve the following differential equation:
`x ("d"y)/("d"x) = y - xcos^2(y/x)`
Solve the following homogeneous differential equation:
(y2 – 2xy) dx = (x2 – 2xy) dy
Solve the following homogeneous differential equation:
An electric manufacturing company makes small household switches. The company estimates the marginal revenue function for these switches to be (x2 + y2) dy = xy dx where x represents the number of units (in thousands). What is the total revenue function?
Choose the correct alternative:
If sec2 x is an integrating factor of the differential equation `("d"y)/("d"x) + "P"y` = Q then P =
Choose the correct alternative:
A homogeneous differential equation of the form `("d"y)/("d"x) = f(y/x)` can be solved by making substitution
Form the differential equation having for its general solution y = ax2 + bx
Solve (x2 + y2) dx + 2xy dy = 0