Advertisements
Advertisements
प्रश्न
Solve the following homogeneous differential equation:
`("d"y)/("d"x) = (3x - 2y)/(2x - 3y)`
उत्तर
`("d"y)/("d"x) = (3x - 2y)/(2x - 3y)` ......(1)
It is a homogeneous differential equation same degree in x and y
Put y = vx and `("d"y)/("d"x) = "v" + x "dv"/("d"x)`
Equation (1)
⇒ `"v" + x "dv"/("d"x) = (3x - 2("vx"))/(2x - 3("vx"))`
`"v" + x "dv"/("d"x) = (x[3 - 2"v"])/(2[2 - 3"v"])`
`x "dv"/("d"x) = ((3 - 2"v"))/((2 - 3"v")) - "v"`
`x "dv"/("d"x) = ((3 - 2"v") - "v"(2 - 3"v"))/((2 - 3"v"))`
= `(3 - 2"v" - 2"v" + "v"^2)/((2 - "v"))`
`x "dv"/("d"x) = ((3"v"^2 - 4"v" + 3))/(-(3"v" - 2))`
`((3"v" - 2))/((3"v"^2 - 4"v" + 3)) "dv" = - 1/x "d"x`
Integrating on both sides
`int ((3"v" - 2))/((3"v"^2 - 4"v" + 3)) "dv" = - int 1/x "d"x`
`1/2 int ((6"v" - 4))/((3"v"^2 - 4"v" + 3)) = - int 1/x "d"x`
`1/2 log(3"v"^2 - 4"v" + 3) = - log x + log "c"`
`log (3"v"^2 - 4"v" + 3)^(1/2) = log("c"/x)`
⇒ `(3"v"^2 - 4"v" + 3)^(1/2) = "c"/x`
`sqrt(3(y/x)^2 - 4(y/x) + 3) = "c"/x`
`sqrt((3y^2)/x^2 - (4y)/x + 3) = "c"/x`
`sqrt((3y^2 - 4xy + 3x^2)/x) = "c"/x`
Squaring on both sides
`(3y^2 - 4xy + 3x^2)/x^2 = ("c"/x)^2`
`3y^2 - 4xy + 3x^2 = x^2 xx ("c"^2/x^2)`
`3y^2 - 4xy + 3x^2 = "c"^2`
⇒ `3y^2 - 4xy + 3x^2` = c
APPEARS IN
संबंधित प्रश्न
The velocity v, of a parachute falling vertically satisfies the equation `"v" (dv)/(dx) = "g"(1 - v^2/k^2)` where g and k are constants. If v and are both initially zero, find v in terms of x
Solve the following differential equation:
`(ydx - xdy) cot (x/y)` = ny2 dx
Solve the following differential equation:
`x ("d"y)/("d"x) = y - xcos^2(y/x)`
Choose the correct alternative:
The solution of `("d"y)/("d"x) + "p"(x)y = 0` is
Solve: `y(1 - x) - x ("d"y)/("d"x)` = 0
Solve the following homogeneous differential equation:
`x ("d"y)/("d"x) - y = sqrt(x^2 + y^2)`
Solve the following:
`("d"y)/(""dx) + y cos x = sin x cos x`
Solve the following:
`("d"y)/("d"x) + (3x^2)/(1 + x^3) y = (1 + x^2)/(1 + x^3)`
Choose the correct alternative:
If y = ex + c – c3 then its differential equation is
Solve `("d"y)/("d"x) + y cos x + x = 2 cos x`