Advertisements
Advertisements
प्रश्न
Solve the following quadratic equations by factorization:
`m/nx^2+n/m=1-2x`
उत्तर
We have been given
`m/nx^2+n/m=1-2x`
`(m^2x^2+n^2)/(mn)=1-2x`
m2x2 + 2mnx + (n2 - mn) = 0
`m^2x^2+mnx+mnx+[n^2-(sqrt(mn))^2]=0`
`m^2x^2+mnx+mnx+(n+sqrt(mn))(n-sqrt(nm))+(msqrt(mnx)-msqrt(mnx))=0`
`[m^2x^2 + mnx + msqrt(mnx)]+[mnx-msqrt(mnx)+(n+sqrt(mn))(n-sqrt(mn))]=0`
`[m^2x^2 + mnx + msqrt(mnx)]+[(mx)(n-sqrt(mn))+(n+sqrt(mn))(n-sqrt(mn))]=0`
`(mx)(mx+n+sqrt(mn))+(n-sqrt(mn))(mx+n+sqrt(mn))=0`
`(mx+n+sqrt(mn))(mx+n-sqrt(mn))=0`
Therefore,
`mx+n+sqrt(mn)=0`
`mx=-n-sqrt(mn)`
`x=(-n-sqrt(mn))/m`
or
`mx+n-sqrt(mn)=0`
`mx=-n+sqrt(mn)`
`x=(-n-sqrt(mn))/m`
Hence, `x=(-n-sqrt(mn))/m` or `x=(-n-sqrt(mn))/m`
APPEARS IN
संबंधित प्रश्न
Find two consecutive positive integers, sum of whose squares is 365.
Solve the following quadratic equations by factorization:
`(x-1)/(2x+1)+(2x+1)/(x-1)=5/2` , x ≠ -1/2, 1
Solve:
`1/(x + 1) - 2/(x + 2) = 3/(x + 3) - 4/(x + 4)`
If the equations \[\left( a^2 + b^2 \right) x^2 - 2\left( ac + bd \right)x + c^2 + d^2 = 0\] has equal roots, then
A two digit number is such that the product of the digit is 12. When 36 is added to the number, the digits interchange their places. Find the numbers.
The area of right-angled triangle is 600cm2. If the base of the triangle exceeds the altitude by 10cm, find the dimensions of the triangle.
Solve the following quadratic equation:
4x2 - 4ax + (a2 - b2) = 0 where a , b ∈ R.
Solve the following equation by factorization
4x2 = 3x
Solve the following equation by factorization
`(x^2 - 5x)/(2)` = 0
Solve the quadratic equation: x2 – 2ax + (a2 – b2) = 0 for x.