Advertisements
Advertisements
प्रश्न
Solve the following quadratic equations by factorization:\[\frac{1}{x - 3} + \frac{2}{x - 2} = \frac{8}{x}; x \neq 0, 2, 3\]
उत्तर
\[\frac{1}{x - 3} + \frac{2}{x - 2} = \frac{8}{x}\]
\[ \Rightarrow \frac{\left( x - 2 \right) + 2\left( x - 3 \right)}{\left( x - 3 \right)\left( x - 2 \right)} = \frac{8}{x}\]
\[ \Rightarrow \frac{x - 2 + 2x - 6}{x^2 - 2x - 3x + 6} = \frac{8}{x}\]
\[ \Rightarrow \frac{3x - 8}{x^2 - 5x + 6} = \frac{8}{x}\]
\[ \Rightarrow x\left( 3x - 8 \right) = 8\left( x^2 - 5x + 6 \right)\]
\[ \Rightarrow 3 x^2 - 8x = 8 x^2 - 40x + 48\]
\[ \Rightarrow 5 x^2 - 32x + 48 = 0\]
\[ \Rightarrow 5 x^2 - 20x - 12x + 48 = 0\]
\[ \Rightarrow 5x\left( x - 4 \right) - 12\left( x - 4 \right) = 0\]
\[ \Rightarrow \left( 5x - 12 \right)\left( x - 4 \right) = 0\]
\[ \Rightarrow 5x - 12 = 0 \text { or } x - 4 = 0\]
\[ \Rightarrow x = \frac{12}{5} or x = 4\]
Hence, the factors are 4 and \[\frac{12}{5}\].
APPEARS IN
संबंधित प्रश्न
Find two consecutive positive integers, sum of whose squares is 365.
Find the two consecutive natural numbers whose product is 20.
Solve:
`1/(x + 1) - 2/(x + 2) = 3/(x + 3) - 4/(x + 4)`
Solve the following quadratic equations by factorization: \[\frac{16}{x} - 1 = \frac{15}{x + 1}; x \neq 0, - 1\]
Solve the following equation :
`1/(("x" - 1)(x - 2)) + 1/(("x" - 2)("x" - 3)) + 1/(("x" - 3)("x" -4)) = 1/6`
Solve the following quadratic equation using formula method only
x2 - 6x + 4 = 0
Solve the equation x4 + 2x3 - 13x2 + 2x + 1 = 0.
A two digit number contains the bigger at ten’s place. The product of the digits is 27 and the difference between two digits is 6. Find the number.
Find the roots of the following quadratic equation by the factorisation method:
`2x^2 + 5/3x - 2 = 0`
At present Asha’s age (in years) is 2 more than the square of her daughter Nisha’s age. When Nisha grows to her mother’s present age, Asha’s age would be one year less than 10 times the present age of Nisha. Find the present ages of both Asha and Nisha.