Advertisements
Advertisements
प्रश्न
Solve the following quadratic equations by factorization: \[\frac{1}{2a + b + 2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}\]
उत्तर
\[\frac{1}{2a + b + 2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}\]
\[ \Rightarrow \frac{1}{2a + b + 2x} - \frac{1}{2a} = \frac{1}{b} + \frac{1}{2x}\]
\[ \Rightarrow \frac{2a - \left( 2a + b + 2x \right)}{\left( 2a + b + 2x \right)\left( 2a \right)} = \frac{2x + b}{2bx}\]
\[ \Rightarrow \frac{- b - 2x}{4 a^2 + 2ab + 4ax} = \frac{2x + b}{2bx}\]
\[ \Rightarrow \frac{- 1\left( 2x + b \right)}{4 a^2 + 2ab + 4ax} = \frac{2x + b}{2bx}\]
\[ \Rightarrow - 2bx\left( 2x + b \right) = \left( 4 a^2 + 2ab + 4ax \right)\left( 2x + b \right)\]
\[ \Rightarrow \left( 4 a^2 + 2ab + 4ax \right)\left( 2x + b \right) + 2bx\left( 2x + b \right) = 0\]
\[ \Rightarrow \left( 2x + b \right)\left( 4 a^2 + 2ab + 4ax + 2bx \right) = 0\]
\[ \Rightarrow 2x + b = 0 \text { or } 4 a^2 + 2ab + \left( 4a + 2b \right)x = 0\]
\[ \Rightarrow x = - \frac{b}{2} \text { or } x = - \frac{4 a^2 + 2ab}{4a + 2b}\]
\[ \Rightarrow x = - \frac{b}{2} \text { or } x = - \frac{a\left( 4a + 2b \right)}{4a + 2b}\]
\[ \Rightarrow x = - \frac{b}{2} \text { or } x = - a\]
Hence, the factors are \[- a\] and \[- \frac{b}{2}\].
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equations by factorization:
`(x-a)/(x-b)+(x-b)/(x-a)=a/b+b/a`
Solve:
`1/(x + 1) - 2/(x + 2) = 3/(x + 3) - 4/(x + 4)`
Find the values of k for which the roots are real and equal in each of the following equation:
\[4 x^2 + px + 3 = 0\]
If 2 is a root of the equation x2 + ax + 12 = 0 and the quadratic equation x2 + ax + q = 0 has equal roots, then q =
Solve the following equation: c
Solve the following equation :
`("x" - 1)/("x" - 2) + ("x" - 3)/("x" - 4) = 3 1/3`
Five years ago, a woman’s age was the square of her son’s age. Ten years later her age will be twice that of her son’s age. Find:
The present age of the woman.
Two pipes running together can 1 fill a cistern in 11 1/9 minutes. If one pipe takes 5 minutes more than the other to fill the cistern find the time when each pipe would fill the cistern.
Harish made a rectangular garden, with its length 5 metres more than its width. The next year, he increased the length by 3 metres and decreased the width by 2 metres. If the area of the second garden was 119 sq m, was the second garden larger or smaller ?
Two years ago, a man’s age was three times the square of his daughter’s age. Three years hence, his age will be four times his daughter’s age. Find their present ages.