Advertisements
Advertisements
प्रश्न
Solve the following quadratic equations by factorization: \[\frac{1}{2a + b + 2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}\]
उत्तर
\[\frac{1}{2a + b + 2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}\]
\[ \Rightarrow \frac{1}{2a + b + 2x} - \frac{1}{2a} = \frac{1}{b} + \frac{1}{2x}\]
\[ \Rightarrow \frac{2a - \left( 2a + b + 2x \right)}{\left( 2a + b + 2x \right)\left( 2a \right)} = \frac{2x + b}{2bx}\]
\[ \Rightarrow \frac{- b - 2x}{4 a^2 + 2ab + 4ax} = \frac{2x + b}{2bx}\]
\[ \Rightarrow \frac{- 1\left( 2x + b \right)}{4 a^2 + 2ab + 4ax} = \frac{2x + b}{2bx}\]
\[ \Rightarrow - 2bx\left( 2x + b \right) = \left( 4 a^2 + 2ab + 4ax \right)\left( 2x + b \right)\]
\[ \Rightarrow \left( 4 a^2 + 2ab + 4ax \right)\left( 2x + b \right) + 2bx\left( 2x + b \right) = 0\]
\[ \Rightarrow \left( 2x + b \right)\left( 4 a^2 + 2ab + 4ax + 2bx \right) = 0\]
\[ \Rightarrow 2x + b = 0 \text { or } 4 a^2 + 2ab + \left( 4a + 2b \right)x = 0\]
\[ \Rightarrow x = - \frac{b}{2} \text { or } x = - \frac{4 a^2 + 2ab}{4a + 2b}\]
\[ \Rightarrow x = - \frac{b}{2} \text { or } x = - \frac{a\left( 4a + 2b \right)}{4a + 2b}\]
\[ \Rightarrow x = - \frac{b}{2} \text { or } x = - a\]
Hence, the factors are \[- a\] and \[- \frac{b}{2}\].
APPEARS IN
संबंधित प्रश्न
Solve for x
:`1/((x-1)(x-2))+1/((x-2)(x-3))=2/3` , x ≠ 1,2,3
Solve the following quadratic equation using formula method only
x2 - 7x - 5 = 0
Find two natural numbers which differ by 3 and whose squares have the sum of 117.
A two digit number is such that the product of the digits is 12. When 36 is added to this number the digits interchange their places. Determine the number.
Solve the following equation by factorization
`(x^2 - 5x)/(2)` = 0
Solve the following equation by factorization
3(x – 2)2 = 147
Solve the following equation by factorization
x2– 4x – 12 = 0,when x∈N
In an auditorium, the number of rows are equal to the number of seats in each row.If the number of rows is doubled and number of seats in each row is reduced by 5, then the total number of seats is increased by 375. How many rows were there?
Divide 16 into two parts such that the twice the square of the larger part exceeds the square of the smaller part by 164.
Using quadratic formula find the value of x.
p2x2 + (p2 – q2)x – q2 = 0