Advertisements
Advertisements
प्रश्न
Solve the following by reducing them to quadratic equations:
`sqrt(x/(1 -x)) + sqrt((1 - x)/x) = (13)/(6)`.
उत्तर
Given equation `sqrt(x/(1 -x)) + sqrt((1 - x)/x) = (13)/(6)`
Putting `sqrt(x/(1 - x)) = y,` then given equation reducible to the form `y + (1)/y = (13)/(6)`
⇒ `(y^2 + 1)/y = (13)/(6)`
⇒ 6y2 + 6 = 13y
⇒ 6y2 - 13y + 6 = 0
⇒ 6y2 - 9y - 4y + 6 = 0
⇒ 3y(2y - 3) -2(2y - 3) = 0
⇒ (2y - 3) (3y - 2) = 0
⇒ 2y - 3 = 0 or 3y - 2 = 0
⇒ y = 3/2 or y = 2/3
But `sqrt(x/(1 - x)) = y`
∴ `sqrt(x/(1 - x)) = (3)/(2)`
Squaring `x/(1 -x) = (9)/(4)`
⇒ 4x = 9 - 9x
⇒ 13x = 9
⇒ x = `(9)/(13)`
or
`sqrt(x/(1 - x)) = (2)/(3)`
Squaring `x/(1 - x) = (4)/(9)`
⇒ 9x = 4 - 4x
⇒ 9x + 4x = 4
⇒ 13x = 4
⇒ x = `(4)/(13)`
Hence, the required roots are `{9/13,4/13}`.
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equations by factorization:
3x2 = -11x - 10
Solve the following quadratic equations by factorization:
`sqrt2x^2-3x-2sqrt2=0`
`x^2-4x+1=0`
Solve the following quadratic equation by factorisation.
\[6x - \frac{2}{x} = 1\]
Find the values of k for which the quadratic equation
\[\left( 3k + 1 \right) x^2 + 2\left( k + 1 \right)x + 1 = 0\] has equal roots. Also, find the roots.
If \[x = - \frac{1}{2}\],is a solution of the quadratic equation \[3 x^2 + 2kx - 3 = 0\] ,find the value of k.
Write the number of zeroes in the end of a number whose prime factorization is 22 × 53 × 32 × 17.
Solve the following quadratic equation by factorisation:
(x - 4) (x + 2) = 0
Solve for x:
`(x + 1/x)^2 - (3)/(2)(x - 1/x)-4` = 0.
4x2 – 9 = 0 implies x is equal to ______.