Advertisements
Advertisements
प्रश्न
Solve the following by reducing them to quadratic equations:
`((7y - 1)/y)^2 - 3 ((7y - 1)/y) - 18 = 0, y ≠ 0`
उत्तर
The given equation
`((7y - 1)/y)^2 - 3 ((7y - 1)/y) - 18 = 0, y ≠ 0`
Putting `(7y - 1)/y`` = z`, then given equation becomes
z2 - 3z - 18 = 0
⇒ z2 - 6z + 3z - 18 = 0
⇒ z(z - 6) + 3(z - 6) = 0
⇒ (z - 6) (z + 3) = 0
⇒ z - 6 = 0 or z + 3 = 0
⇒ z = 6 or z = -3
But `(7y - 1)/y =z`
∴ `(7y - 1)/y` = 6
⇒ 7y - 1
= 6y
⇒ 7y - 6y
= 1
⇒ y = 1
Also `(7y - 1)/y`
= -3
⇒ 7y - 1
= -3y
⇒ 7y + 3y -1 = 0
⇒ 10y = 1
⇒ y = `(1)/(10)`
Hence, the required roots are `(1)/(10),1`.
APPEARS IN
संबंधित प्रश्न
The numerator of a fraction is 3 less than its denominator. If 2 is added to both the numerator and the denominator, then the sum of the new fraction and original fraction is `29/20`. Find the original fraction.
Solve:
`1/p + 1/q + 1/x = 1/(x + p + q)`
Solve the following quadratic equations by factorization:
`x^2 – (a + b) x + ab = 0`
Solve the following quadratic equations by factorization:
`(1 + 1/(x + 1))(1 - 1/(x - 1)) = 7/8`
`2x^2+5x-3=0`
Factorise : m2 + 5m + 6.
Solve the following quadratic equation by factorization: \[\frac{a}{x - b} + \frac{b}{x - a} = 2\]
If ax2 + bx + c = 0 has equal roots, then c =
Solve (x2 + 3x)2 - (x2 + 3x) -6 = 0.
Solve the following equation by factorization
a2x2 + (a2+ b2)x + b2 = 0, a ≠ 0