Advertisements
Advertisements
प्रश्न
Solve the following by reducing them to quadratic form:
`sqrt(y + 1) + sqrt(2y - 5) = 3, y ∈ "R".`
उत्तर
Given equation
`sqrt(y + 1) + sqrt(2y - 5)` = 3
⇒ `sqrt(y + 1) = 3 - sqrt(2y - 5)`
Squaring both sides, we get
y + 1 = 9 + 2y - 5 - 6`sqrt(2y - 5)`
⇒ y - 2y + 1 - 4 = -6`sqrt(2y - 5)`
-y - 3 = -6`sqrt(2y - 5)`
⇒ y + 3 = 6`sqrt(2y - 5)`
On Squaring again, we get
y2 + 9 + 6y = 36(2y - 5)
⇒ y2 + 9 + 6y = 72y - 180
⇒ y2 + 6y - 72y + 9 + 180 = 0
⇒ y2 - 66y + 189 = 0
∴ y2 - 66y + 189 = 0
Hence, a = 1, b = -66, c = 189
Then, D
= b2 - 4ac
= (66)2 - 4(1) (189)
= 4356 - 756
= 3600 > 0
Roots are real.
∴ y = `(-b ± sqrt(b^2 - 4ac))/(2a)`
y = `(-(-66) ± sqrt(3600))/(2 xx 1) `
y = `(66 ± 60)/(2)`
y = `(66 + 60)/(2), (66 - 60)/(2)`
= `(126)/(2), (6)/(2)`
= 63, 3
y = {63, 3}
But x = 63 does not satisfy the given equation
Hence, the solution is 3.
APPEARS IN
संबंधित प्रश्न
Solve for x: `(x-3)/(x-4)+(x-5)/(x-6)=10/3; x!=4,6`
Solve the following quadratic equation by factorization method : `3x^2-29x+40=0`
Solve the following quadratic equations by factorization:
`x^2-(sqrt3+1)x+sqrt3=0`
Two numbers differ by 3 and their product is 504. Find the number
Solve the following quadratic equation for x:
x2 − 4ax − b2 + 4a2 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
\[4 x^2 + px + 3 = 0\]
If the equation ax2 + 2x + a = 0 has two distinct roots, if
If 2 is a root of the equation x2 + ax + 12 = 0 and the quadratic equation x2 + ax + q = 0 has equal roots, then q =
Solve for x:
`(x + 1/x)^2 - (3)/(2)(x - 1/x)-4` = 0.
In each of the following, determine whether the given values are solution of the given equation or not:
`a^2x^2 - 3abx + 2b^2 = 0; x = a/b, x = b/a`.