हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा १२

Solve the following differential equation: DDe(4D2+16D+15)y=4e-32x - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

`(4"D"^2 + 16"D" + 15)y = 4"e"^((-3)/2x)`

योग

उत्तर

The auxiliary equation is 4m2 + 16m + 15 = 0

4m2 + 16m + 10m + 15 = 0

2m(2m + 3) + 5(2m + 3) = 0

(2m + 3)(2m + 5) = 0

2m = – 3, – 5

∴ m = `(-3)/2, (-5)/2`

Roots are real and different

C.F = (Ax + B) em1x + Bem2x

C.F = `"Ae"^((-3)/2 x) + "Be"^((-5)/2 x)`

P.I = `1/((4"D"^2 + 16"D" + 15)) 4"e"^((-3)/2 x)`

Replace D by `(-3)/2`

4D2 + 16D + 15 = 0

When D = `(-3)/2`

P.I = `x * 4/(4(2"D") + 16(1)) 4"e"^((-3)/2x)`

= `x * 1/(8"D" + 16) 4"e"^((-3)/2x)`

= `x * 1/(8((-3)/2) + 16) 4"e"^((-3)/2 x)`

= `x * 1/(-12 + 16) 4"e"^((-3)/2 x)`

= `x * 1/4 4"e"^((-3)/2 x)`

P.I = `x"e"^((-3)/2 x)`

The general solution is y = C.F + P.I

y = `"Ae"^((-3)/2 x) + "Be"^((-5)/2 x) + x"e"^((-3)/2 x)`

shaalaa.com
Second Order First Degree Differential Equations with Constant Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Differential Equations - Exercise 4.5 [पृष्ठ ९९]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
अध्याय 4 Differential Equations
Exercise 4.5 | Q 11 | पृष्ठ ९९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×