Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
(D2 – 10D + 25) y = 4e5x + 5
उत्तर
The auxiliary equation is
m2 – 10m + 25 = 0
(m – 5)(m – 5) = 0
m = 5, 5
Roots are real and equal
C.F = (Ax + B) emx
C.F = (Ax + B) e5x
P.I(1) = `x * 4/(2"D" - 10) "e"^(5x)`
Replace D by 5
2D – 10 = 0
when D = 5
P.I(1) = `x^2 * 4/2 "e"^(5x)`
P.I1 = `2x^2 "e"^(5x)`
P.I2 = `5/("D"^2 - 10"D" + 25)`
= `(5"e"^(0_x))/("D"^2 - 10"D" + 25)`
= `(5"e"^(0_x))/(0 - 10(0) + 25)`
== `5/25`
= `1/5`
P.I2 - `1/5`
The general solution is y = C.F + P.I1 + P.I2
∴ y = `("A"x + "B")"e"^(5x) + 2x^2"e"^(5x) + 1/5`
APPEARS IN
संबंधित प्रश्न
Solve the following differential equation:
`("d"^2y)/("d"x^2) - 6 ("d"y)/("d"x) + 8y = 0`
Solve the following differential equation:
`("d"^2y)/("d"x^2) - 4("d"y)/("d"x) + 4y = 0`
Solve the following differential equation:
`("d"^2y)/("d"x^2) - 2"k" ("d"y)/("d"x) + "k"^2y = 0`
Solve the following differential equation:
(4D2 + 4D – 3)y = e2x
Solve the following differential equation:
(D2 + D – 2)y = e3x + e–3x
Solve the following differential equation:
Suppose that the quantity demanded Qd = `13 - 6"p" + 2 "dp"/"dt" + ("d"^2"p")/("dt"^2)` and quantity supplied Qs = `- 3 + 2"p"` where p is the price. Find the equilibrium price for market clearance
Choose the correct alternative:
The integrating factor of `x ("d"y)/("d"x) - y = x^2` is
Choose the correct alternative:
The complementary function of `("d"^2y)/("d"x^2) - ("d"y)/("d"x) = 0` is
Choose the correct alternative:
The P.I of (3D2 + D – 14)y = 13e2x is
Suppose that Qd = `30 - 5"P" + 2 "dP"/"dt" + ("d"^2"P")/("dt"^2)` and Qs = 6 + 3P. Find the equilibrium price for market clearance