हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा १२

Solve the following differential equation: (D2 + D – 2)y = e3x + e–3x - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

(D2 + D – 2)y = e3x + e–3x 

योग

उत्तर

The auxiliary equation is

m2 + m – 6 = 0

(m + 3)(m – 2) = 0

Roots are real and different

The complementary function is

C.F = Aem1x + Bem2x

C.F = Ae3x + Be2x 

P.I = `1/("d"^2 + "D" - 6)  "e"^(3x)`

= `1/((3)^2 + 3 - 6) "e"^(3x)`

P.I = `"e"^(3x)/(9 + 3 - 6)`

P.I(1) = `"e"^(3x)/6`

P.I(2) = `1/("D"^2 + "D" - 6) "e"^(-3x)`

Replace D by – 3

D2 + D – 6 = 0

When D = – 3

∴ P.I2 = `x * 1/(2"D" + 1) "e"^(-3x)`

= `x * 1/(2(-3) + 1) "e"^(-3x)`

= `x * 1/(-5) "e"^(-3x)`

P.I2 = `(-x)/5 "e"^(-3x)`

The general solution is y = C.F = P.I1 + P.I2

y = `"Ae"^(-3x) + "Be"^(2x) + "e"^(3x)/6 - x/5 "e"^(-3x)`

shaalaa.com
Second Order First Degree Differential Equations with Constant Coefficients
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Differential Equations - Exercise 4.5 [पृष्ठ ९९]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
अध्याय 4 Differential Equations
Exercise 4.5 | Q 9 | पृष्ठ ९९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×