Advertisements
Advertisements
प्रश्न
Solve the following differential equation (x2 – yx2) dy + (y2 + xy2) dx = 0.
Separating the variables, the given equation can be written as:
`square dy + square dx = 0`
∴`(y^(-2) - 1/y)dy + (x^(-2) + 1/x)dx = 0`
`square dy - 1/y dy + x^(-2) dx + square dx = 0`
Integrating, we get
`inty^(-2) dy - int1/y dy + int x^(-2)dx + int 1/x dx = 0`
∴ `y^(-1)/(-1) - square + x^(-1)/(-1) + square = c`
`-1/y - 1/x + log x - log y = c`
`log x - log y = square + c`
is the required solution.
उत्तर
Separating the variables, the given equation can be written as:
`bb(x^2(1-y)) dy + bb(y^2(1 + x)) dx = 0`
∴`(y^(-2) - 1/y)dy + (x^(-2) + 1/x)dx = 0`
`bb(y^(-2)) dy - 1/y dy + x^(-2) dx + bb(1/x) dx = 0`
Integrating, we get
`inty^(-2) dy - int1/y dy + int x^(-2)dx + int 1/x dx = 0`
∴ `y^(-1)/(-1) - bb(log y) + x^(-1)/(-1) + bb(log x) = c`
`-1/y - 1/x + log x - log y = c`
`log x - log y = bb((x/y)) + c`
is the required solution.