Advertisements
Advertisements
प्रश्न
Divide the number 84 into two parts such that the product of one part and square of the other is maximum.
Solution:
Let one part be x then the other part will be 84 − x.
∴ f(x) = `square`
∴ f'(x) = 168x − 3x2
For extreme values f'(x) = 0
168x − 3x2 = 0
∴ 3x(56 − x) = 0
∴ x = `square or square`
f'(x) = 168 − 6x
If x = 0, f'(0) = 168 − 6(0) = 168 > 0
∴ function attains maximum at x = 0
If x = 56, f'(56) = `square` < 0
∴ function attains maximum at x = 56
∴ Two parts of 84 are `square and square`
उत्तर
Let one part be x then the other part will be 84 − x.
∴ f(x) = x(84 − x)2
∴ f'(x) = 168x − 3x2
For extreme values f'(x) = 0
168x − 3x2 = 0
∴ 3x(56 − x) = 0
∴ x = 0 or 56
f'(x) = 168 − 6x
If x = 0, f'(0) = 168 − 6(0) = 168 > 0
∴ function attains maximum at x = 0
If x = 56, f'(56) = −168 < 0
∴ function attains maximum at x = 56
∴ Two parts of 84 are 56 and 28