Advertisements
Advertisements
प्रश्न
Solve the following equation.
`[10x^2 + 15x + 63]/[5x^2 - 25x + 12] = (2x + 3)/( x -5)`
उत्तर
`[10x^2 + 15x + 63]/[5x^2 - 25x + 12] = (2x + 3)/( x -5)`
By Alternando,
⇒ `[10x^2 + 15x + 63]/(2x + 3) =[5x^2 - 25x + 12]/( x -5)`
Multiplying both sides by `1/(5x)`, we get
`[10x^2 + 15x + 63]/(10x^2 + 15x) =[5x^2 - 25x + 12]/( 5x^2 -25x)`
Using dividendo, we get
`[(10x^2 + 15x + 63) - (10x^2 + 15x)]/(10x^2 + 15x) =[(5x^2 - 25x + 12) - ( 5x^2 -25x)]/( 5x^2 -25x)`
⇒ `(63)/[10x^2 + 15x] = 12/[5x^2 - 25x]`
⇒ `(63)/{5x (2x + 3)} = 12/{5x(x - 5)}`
⇒ `(63)/(2x + 3) = 12/(x - 5)`
⇒ `63(x - 5) = 12(2x + 3)`
⇒ `63x - 315 = 24x + 36`
⇒ `63x - 24x = 315 + 36`
⇒ `39x = 351`
⇒ x = `351/39`
⇒ x = 9
Thus, the solution of the given equation is x = 9.
APPEARS IN
संबंधित प्रश्न
Solve the following equation.
`(x^2 + 12x - 20)/(3x - 5) = (x^2 + 8x + 12)/(2x + 3)`
Solve the following equation.
`[( 2x + 1)^2 + (2x - 1)^2]/[(2x + 1)^2 - (2x - 1)^2] = 17/8`
Solve the following equation.
`[sqrt( 4x + 1) + sqrt( x + 3 )]/[sqrt( 4x + 1 ) - sqrt( x+3 )]=4/1`
Solve the following equation.
`[(4x +1)^2 + ( 2x + 3)^2]/[4x^2 + 12x + 9] = 61/36`
Solve the following equation.
`[(3x - 4)^3 - ( x + 1)^3]/[( 3x - 4)^3 + ( x + 1)^3] = 61/189`