Advertisements
Advertisements
प्रश्न
Solve the following equation.
`[(3x - 4)^3 - ( x + 1)^3]/[( 3x - 4)^3 + ( x + 1)^3] = 61/189`
उत्तर
`[(3x - 4)^3 - ( x + 1)^3]/[( 3x - 4)^3 + ( x + 1)^3] = 61/189`
Applying componendo and dividendo, we get
`{[(3x - 4)^3 - ( x + 1)^3] + [( 3x - 4)^3 + ( x + 1)^3]} /{[(3x - 4)^3 - ( x + 1)^3] - [( 3x - 4)^3 + ( x + 1)^3]} = (61 + 189) /(61 - 189)`
⇒ `{2 ( 3x - 4)^3}/{-2( x +1)^3} = 250/-128`
⇒ `{(3x - 4)^3}/( x + 1)^3 = 125/64`
Taking cube root on both sides, we get
`therefore (3x -4)/(x + 1) = root(3)(125/64)`
⇒ `(3x - 4)/(x + 1)= root(3)[(5/4)^3]`
⇒ `(3x - 4)/(x + 1) = 5/4`
⇒ 4(3x - 4) = 5(x + 1)
⇒ 12x - 16 = 5x + 5
⇒ 12x - 5x = 16 + 5
⇒ 7x = 21
⇒ x = 3
Thus, the solution of the given equation is x = 3.
APPEARS IN
संबंधित प्रश्न
Solve the following equation.
`(x^2 + 12x - 20)/(3x - 5) = (x^2 + 8x + 12)/(2x + 3)`
Solve the following equation.
`[10x^2 + 15x + 63]/[5x^2 - 25x + 12] = (2x + 3)/( x -5)`
Solve the following equation.
`[( 2x + 1)^2 + (2x - 1)^2]/[(2x + 1)^2 - (2x - 1)^2] = 17/8`
Solve the following equation.
`[sqrt( 4x + 1) + sqrt( x + 3 )]/[sqrt( 4x + 1 ) - sqrt( x+3 )]=4/1`
Solve the following equation.
`[(4x +1)^2 + ( 2x + 3)^2]/[4x^2 + 12x + 9] = 61/36`