Advertisements
Advertisements
प्रश्न
Solve the following problem :
Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X < – 0.5 or X > 0.5)
उत्तर
Given that f(x) represents a p.d.f. of r.v. X.
∴ `int_-2^2 f(x)*dx` = 1
∴ `int_-2^2 "k"(4 - x^2)*dx` = 1
∴ `"k"[4x - x^3/3]_-2^2` = 1
∴ `"k"[(8 - 8/3) - (-8 + 8/3)]` = 1
∴ `"k"(16/3 + 16/3)` = 1
∴ `"k"(32/3)` = 1
∴ k = `(3)/(32)`
F(x) = `int_-2^2 f(x)*dx`
= `int_-2^2"k"(4 - x^2)*dx`
= `(3)/(32)[4x - x^3/3]_-2^2`
= `(3)/(32)[4x - x^3/3 + 8 - 8/3]`
∴ F(x) = `(3)/(32)[4x - x^3/3 + 16/3]`
P(X < – 0.5 or X > 0.5)
= 1 – P(– 0.5 ≤ X ≤ 0.5)
= 1 – [F(0.5) – F(– 0.5)]
= `1 - {3/32[4(0.5) - (0.5)^3/3 + 16/3] - 3/32[4(-0.5) - (0.5)^3/3 + 16/3]`
= `1 - 3/32(2 - 1/24 + 16/3 + 2 - 1/24 - 16/3)`
= `1 - 3/32(4 - 1/12)`
= `1 - (3)/(32) xx (47)/(12)`
= `1 - (47)/(128)`
= `(81)/(128)`.
APPEARS IN
संबंधित प्रश्न
Verify which of the following is p.d.f. of r.v. X:
f(x) = 2, for 0 ≤ x ≤ 1.
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is non-negative
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is even
Check whether the following is a p.d.f.
f(x) = 2 for 0 < x < q.
The following is the p.d.f. of a r.v. X.
f(x) = `{(x/(8), "for" 0 < x < 4),(0, "otherwise."):}`
Find P(X < 1.5),
The following is the p.d.f. of a r.v. X.
f(x) = `{(x/(8), "for" 0 < x < 4),(0, "otherwise."):}`
Find P(X > 2)
Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by
f(x) = `{(1/5, "for" 0 ≤ x ≤ 5),(0, "otherwise".):}`
Find the probability that waiting time is more than 4 minutes.
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X < – 0.5 or X > 0.5)
Following is the p. d. f. of a continuous r.v. X.
f(x) = `{(x/8, "for" 0 < x < 4),(0, "otherwise".):}`
Find F(x) at x = 0.5, 1.7 and 5.
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(1 < X < 2)
Solve the following problem :
Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X > 0)
Solve the following problem :
Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(–1 < X < 1)
The values of continuous r.v. are generally obtained by ______
State whether the following statement is True or False:
If f(x) = `{:("k"x (1 - x)",", "for" 0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12
For the following probability density function of a random variable X, find P(|X| < 1).
`{:(f(x) = (x + 2)/18,";" "for" -2 < x < 4),( = 0,"," "otherwise"):}`
Find the c.d.f. F(x) associated with the following p.d.f. f(x)
f(x) = `{{:(3(1 - 2x^2)",", 0 < x < 1),(0",", "otherwise"):}`
Find `P(1/4 < x < 1/3)` by using p.d.f. and c.d.f.