हिंदी

Solve the following problem : Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f. f(x) = {k(4-x2)for-2≤x≤20otherwise.Compute P(–1 < X < 1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(–1 < X < 1)

योग

उत्तर

Given that f(x) represents a p.d.f. of r.v. X.

∴ `int_-2^2 f(x)*dx` = 1

∴ `int_-2^2 "k"(4 - x^2)*dx` = 1

∴ `"k"[4x - x^3/3]_-2^2` = 1

∴ `"k"[(8 - 8/3) - (-8 + 8/3)]` = 1

∴ `"k"(16/3 + 16/3)` = 1

∴ `"k"(32/3)` = 1

∴ k = `(3)/(32)`

F(x) = `int_-2^2 f(x)*dx`

= `int_-2^2"k"(4 - x^2)*dx`

= `(3)/(32)[4x - x^3/3]_-2^2`

= `(3)/(32)[4x - x^3/3 + 8 - 8/3]`

∴ F(x) = `(3)/(32)[4x - x^3/3 + 16/3]`

P(–1 < X < 1) = F(1) – F(–1)

= `(3)/(32)(4 - 1/3 + 16/3) - (3)/(32)(-4 + 1/3 + 16/3)`

= `(3)/(32)(9 - 5/3)`

= `(3)/(32)(22/3)`

= `(11)/(16)`.

shaalaa.com
Probability Distribution of a Continuous Random Variable
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Probability Distributions - Part I [पृष्ठ १५६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Probability Distributions
Part I | Q 1.13 | पृष्ठ १५६

संबंधित प्रश्न

Verify which of the following is p.d.f. of r.v. X:

 f(x) = sin x, for 0 ≤ x ≤ `π/2`


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise


Check whether the following is a p.d.f. 

f(x) = `{(x, "for"  0 ≤ x ≤ 1),(2 - x, "for"  1 < x ≤ 2.):}`


The following is the p.d.f. of a r.v. X.

f(x) = `{(x/(8),  "for"  0 < x < 4),(0,  "otherwise."):}`

Find P(1 < X < 2),


Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by

f(x) = `{(1/5,  "for"  0 ≤ x ≤ 5),(0,  "otherwise"):}`

Find the probability that waiting time is between 1 and 3 minutes.


Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by

f(x) = `{(1/5,  "for"  0 ≤ x ≤ 5),(0,  "otherwise".):}`
Find the probability that waiting time is more than 4 minutes.


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find F(x) at x = 0.5, 1.7 and 5.


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(1 < X < 2)


If a r.v. X has p.d.f f(x) = `{("c"/x","  1 < x < 3"," "c" > 0),(0","  "otherwise"):}` 
Find c, E(X), and Var(X). Also Find F(x).


State whether the following is True or False :

If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`


Solve the following problem :

In the following probability distribution of a r.v.X.

x 1 2 3 4 5
P (x) `(1)/(20)` `(3)/(20)` a 2a `(1)/(20)`

Find a and obtain the c.d.f. of X.


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X > 0)


Solve the following problem :

Determine k if the p.d.f. of the r.v. is

f(x) = `{("ke"^(-thetax),  "for"  0 ≤ x < oo),(0, "otherwise".):}`
Find `"P"("X" > 1/theta)` and determine M is P(0 < X < M) = `(1)/(2)`


Solve the following problem :

The p.d.f. of the r.v. X is given by

f(x) = `{("k"/sqrt(x), "for"  0 < x < 4.),(0, "otherwise".):}`
Determine k, the c.d.f. of X, and hence find P(X ≤ 2) and P(X ≥ 1).


State whether the following statement is True or False:

If f(x) = `{:("k"x  (1 - x)",", "for"  0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12


Find k, if the following function is p.d.f. of r.v.X:

f(x) = `{:(kx^2(1 - x)",", "for"  0 < x < 1),(0",", "otherwise"):}`


If the p.d.f. of X is

f(x) = `x^2/18,   - 3 < x < 3`

      = 0,        otherwise

Then P(X < 1) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×