English

Solve the following problem : Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f. f(x) = {k(4-x2)for-2≤x≤20otherwise.Compute P(–1 < X < 1) - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(–1 < X < 1)

Sum

Solution

Given that f(x) represents a p.d.f. of r.v. X.

∴ `int_-2^2 f(x)*dx` = 1

∴ `int_-2^2 "k"(4 - x^2)*dx` = 1

∴ `"k"[4x - x^3/3]_-2^2` = 1

∴ `"k"[(8 - 8/3) - (-8 + 8/3)]` = 1

∴ `"k"(16/3 + 16/3)` = 1

∴ `"k"(32/3)` = 1

∴ k = `(3)/(32)`

F(x) = `int_-2^2 f(x)*dx`

= `int_-2^2"k"(4 - x^2)*dx`

= `(3)/(32)[4x - x^3/3]_-2^2`

= `(3)/(32)[4x - x^3/3 + 8 - 8/3]`

∴ F(x) = `(3)/(32)[4x - x^3/3 + 16/3]`

P(–1 < X < 1) = F(1) – F(–1)

= `(3)/(32)(4 - 1/3 + 16/3) - (3)/(32)(-4 + 1/3 + 16/3)`

= `(3)/(32)(9 - 5/3)`

= `(3)/(32)(22/3)`

= `(11)/(16)`.

shaalaa.com
Probability Distribution of a Continuous Random Variable
  Is there an error in this question or solution?
Chapter 8: Probability Distributions - Part I [Page 156]

APPEARS IN

RELATED QUESTIONS

The time (in minutes) for a lab assistant to prepare the equipment for a certain experiment is a random variable taking values between 25 and 35 minutes with p.d.f 

`f(x) = {{:(1/10",", 25 ≤ x ≤ 35),(0",", "otherwise"):}`

What is the probability that preparation time exceeds 33 minutes? Also, find the c.d.f. of X.


Verify which of the following is p.d.f. of r.v. X:

 f(x) = sin x, for 0 ≤ x ≤ `π/2`


Verify which of the following is p.d.f. of r.v. X:

 f(x) = 2, for 0 ≤ x ≤ 1.


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is non-negative


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is odd


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is even


Check whether the following is a p.d.f. 

f(x) = `{(x, "for"  0 ≤ x ≤ 1),(2 - x, "for"  1 < x ≤ 2.):}`


The following is the p.d.f. of a r.v. X.

f(x) = `{(x/(8),  "for"  0 < x < 4),(0,  "otherwise."):}`

Find P(X < 1.5),


Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by

f(x) = `{(1/5,  "for"  0 ≤ x ≤ 5),(0,  "otherwise".):}`
Find the probability that waiting time is more than 4 minutes.


Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2),  "for" -2 ≤ x ≤ 2),(0,  "otherwise".):}`
compute P(X > 0)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(1 < X < 2)


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X > 0)


Solve the following problem :

Determine k if the p.d.f. of the r.v. is

f(x) = `{("ke"^(-thetax),  "for"  0 ≤ x < oo),(0, "otherwise".):}`
Find `"P"("X" > 1/theta)` and determine M is P(0 < X < M) = `(1)/(2)`


Solve the following problem :

The p.d.f. of the r.v. X is given by

f(x) = `{("k"/sqrt(x), "for"  0 < x < 4.),(0, "otherwise".):}`
Determine k, the c.d.f. of X, and hence find P(X ≤ 2) and P(X ≥ 1).


For the following probability density function of a random variable X, find P(X < 1).

`{:(f(x) = (x + 2)/18,";"  "for" -2 < x < 4),(               = 0,","  "otherwise"):}`


For the following probability density function of a random variable X, find P(|X| < 1).

`{:(f(x) = (x + 2)/18,";"  "for" -2 < x < 4),(               = 0,","  "otherwise"):}`


Find k, if the following function is p.d.f. of r.v.X:

f(x) = `{:(kx^2(1 - x)",", "for"  0 < x < 1),(0",", "otherwise"):}`


Find the c.d.f. F(x) associated with the following p.d.f. f(x)

f(x) = `{{:(3(1 - 2x^2)",", 0 < x < 1),(0",", "otherwise"):}`

Find `P(1/4 < x < 1/3)` by using p.d.f. and c.d.f.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×