Advertisements
Advertisements
प्रश्न
State whether the following is True or False :
If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`
विकल्प
True
False
उत्तर
True
Given, n = 6, P(X = 4) = P(X = 2)
X ~ B(n, p) ≡ X ~ B (6, p)
The p.m.f. of X is given by
p(X = x) = `""^"n""C"_x "p"^x q^("n" - x)`
∴ p(X = x) = `""^6"C"_x "p"^x q^(6 - x), x` = 0, 1, 2, ..., 6
Now, P(X = 4) = P(X = 2)
∴ `""^6"C"_4 "p"^4 "q"^2 = ""^6"C"_2 "p"^2 "q"^4`
∴ `(6!)/(4!2!) "p"^2 = (6!)/(2!4!) "q"^2`
∴ p2 = q2
∴ p = ± q
∴ p =q
∴ p = 1 – p ...[∵ q = 1 – p ]
∴ p + p = 1
∴ 2p = 1
∴ p = `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Verify which of the following is p.d.f. of r.v. X:
f(x) = x, for 0 ≤ x ≤ 1 and 2 - x for 1 < x < 2
Verify which of the following is p.d.f. of r.v. X:
f(x) = 2, for 0 ≤ x ≤ 1.
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is odd
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is even
Check whether the following is a p.d.f.
f(x) = 2 for 0 < x < q.
The following is the p.d.f. of a r.v. X.
f(x) = `{(x/(8), "for" 0 < x < 4),(0, "otherwise."):}`
Find P(X > 2)
Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.
f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≤ 1)
Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by
f(x) = `{(1/5, "for" 0 ≤ x ≤ 5),(0, "otherwise"):}`
Find the probability that waiting time is between 1 and 3 minutes.
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X > 0)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(1 < X < 2)
Solve the following problem :
In the following probability distribution of a r.v.X.
x | 1 | 2 | 3 | 4 | 5 |
P (x) | `(1)/(20)` | `(3)/(20)` | a | 2a | `(1)/(20)` |
Find a and obtain the c.d.f. of X.
Solve the following problem :
Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X > 0)
Solve the following problem :
The p.d.f. of the r.v. X is given by
f(x) = `{((1)/(2"a")",", "for" 0 < x= 2"a".),(0, "otherwise".):}`
Show that `"P"("X" < "a"/2) = "P"("X" > (3"a")/2)`
State whether the following statement is True or False:
If f(x) = `{:("k"x (1 - x)",", "for" 0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12
If r.v. X assumes the values 1, 2, 3, …….., 9 with equal probabilities, then E(X) = 5
State whether the following statement is True or False:
The cumulative distribution function (c.d.f.) of a continuous random variable X is denoted by F and defined by
F(x) = `{:(0",", "for all" x ≤ "a"),( int_"a"^x f(x) "d"x",", "for all" x ≥ "a"):}`