हिंदी

Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f. f(x) = {k(4-x2) for-2≤x≤20 otherwise.compute P(X > 0) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2),  "for" -2 ≤ x ≤ 2),(0,  "otherwise".):}`
compute P(X > 0)

योग

उत्तर

Given that f(x) represents a p.d.f. of r.v. X.

∴ `int_-2^2 f(x)*dx` = 1

∴ `int_-2^2 "k"(4 - x^2)*dx` = 1

∴ `"k"[4x - x^3/3]_-2^2` = 1

∴ `"k"[(8 - 8/3) - (-8 + 8/3)]` = 1

∴ `"k"(16/3 + 16/3)` = 1

∴ `"k"(32/3)` = 1

∴ k = `(3)/(32)`

F(x) = `int_-2^2 f(x)*dx`

= `int_-2^2"k"(4 - x^2)*dx`

= `(3)/(32)[4x - x^3/3]_-2^2`

= `(3)/(32)[4x - x^3/3 + 8 - 8/3]`

∴ F(x) = `(3)/(32)[4x - x^3/3 + 16/3]`

P(X > 0) = 1 – P(X ≤ 0)

= 1 – F(0)

= `1 - (3)/(32)(0 - 0 + 16/3)`

= `1 - (1)/(2)`

= `(1)/(2)`.

shaalaa.com
Probability Distribution of a Continuous Random Variable
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Probability Distributions - Exercise 8.2 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Probability Distributions
Exercise 8.2 | Q 1.07 | पृष्ठ १४५

संबंधित प्रश्न

The time (in minutes) for a lab assistant to prepare the equipment for a certain experiment is a random variable taking values between 25 and 35 minutes with p.d.f 

`f(x) = {{:(1/10",", 25 ≤ x ≤ 35),(0",", "otherwise"):}`

What is the probability that preparation time exceeds 33 minutes? Also, find the c.d.f. of X.


Verify which of the following is p.d.f. of r.v. X:

 f(x) = sin x, for 0 ≤ x ≤ `π/2`


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is non-negative


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is even


The following is the p.d.f. of a r.v. X.

f(x) = `{(x/(8),  "for"  0 < x < 4),(0,  "otherwise."):}`

Find P(X < 1.5),


The following is the p.d.f. of a r.v. X.

f(x) = `{(x/(8),  "for"  0 < x < 4),(0,  "otherwise."):}`

Find P(1 < X < 2),


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x,  "for" 0 ≤ x ≤ 2),(0,  "otherwise".):}`
Calculate : P(X ≤ 1)


Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by

f(x) = `{(1/5,  "for"  0 ≤ x ≤ 5),(0,  "otherwise".):}`
Find the probability that waiting time is more than 4 minutes.


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find expression for the c.d.f. of X.


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find F(x) at x = 0.5, 1.7 and 5.


If a r.v. X has p.d.f f(x) = `{("c"/x","  1 < x < 3"," "c" > 0),(0","  "otherwise"):}` 
Find c, E(X), and Var(X). Also Find F(x).


Fill in the blank :

If x is continuous r.v. and F(xi) = P(X ≤ xi) = `int_(-oo)^(oo) f(x)*dx` then F(x) is called _______


State whether the following is True or False :

If f(x) = k x (1 – x) for 0 < x < 1 = 0 otherwise k = 12


State whether the following is True or False :

If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X < – 0.5 or X > 0.5)


State whether the following statement is True or False:

If f(x) = `{:("k"x  (1 - x)",", "for"  0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12


State whether the following statement is True or False:

The cumulative distribution function (c.d.f.) of a continuous random variable X is denoted by F and defined by

F(x) = `{:(0",",  "for all"  x ≤ "a"),( int_"a"^x  f(x) "d"x",",  "for all"  x ≥ "a"):}`


For the following probability density function of a random variable X, find P(X < 1).

`{:(f(x) = (x + 2)/18,";"  "for" -2 < x < 4),(               = 0,","  "otherwise"):}`


If the p.d.f. of X is

f(x) = `x^2/18,   - 3 < x < 3`

      = 0,        otherwise

Then P(X < 1) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×