Advertisements
Advertisements
प्रश्न
State whether the following is True or False :
If f(x) = k x (1 – x) for 0 < x < 1 = 0 otherwise k = 12
विकल्प
True
False
उत्तर
False
Since the function represents a p.d.f. 1
∴ `int_0^1 f(x)*dx` = 1
∴ `int_0^1 "k"x (1 - x)*dx` = 1
∴ `"k" int_0^1 (x - x^2)*dx` = 1
∴ `[x^2/2 - x^3/3]_0^1 = (1)/"k"`
∴ `(1)/(2) - (1)/(3) = (1)/"k"`
∴ `(1)/(6) = (1)/"k"`
∴ k = 6.
APPEARS IN
संबंधित प्रश्न
Verify which of the following is p.d.f. of r.v. X:
f(x) = x, for 0 ≤ x ≤ 1 and 2 - x for 1 < x < 2
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is non-negative
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is even
Check whether the following is a p.d.f.
f(x) = 2 for 0 < x < q.
Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.
f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≤ 1)
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X < – 0.5 or X > 0.5)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)
If a r.v. X has p.d.f f(x) = `{("c"/x"," 1 < x < 3"," "c" > 0),(0"," "otherwise"):}`
Find c, E(X), and Var(X). Also Find F(x).
Fill in the blank :
If x is continuous r.v. and F(xi) = P(X ≤ xi) = `int_(-oo)^(oo) f(x)*dx` then F(x) is called _______
Solve the following problem :
Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X < – 0.5 or X > 0.5)
Solve the following problem :
Let X denote the reaction temperature in Celsius of a certain chemical process. Let X have the p. d. f.
f(x) = `{((1)/(10), "for" -5 ≤ x < 5),(0, "otherwise".):}`
Compute P(X < 0).
State whether the following statement is True or False:
If f(x) = `{:("k"x (1 - x)",", "for" 0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12
If r.v. X assumes the values 1, 2, 3, …….., 9 with equal probabilities, then E(X) = 5
For the following probability density function of a random variable X, find P(|X| < 1).
`{:(f(x) = (x + 2)/18,";" "for" -2 < x < 4),( = 0,"," "otherwise"):}`